Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Ergin, T. et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).
Ni, X. J. et al. An ultrathin invisibility skin cloak for visible light. Science 349, 1310–1314 (2015).
Parimi, P. V. et al. Imaging by flat lens using negative refraction. Nature 426, 404 (2003).
Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).
Arbabi, A. et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).
Bozhevolnyi, S. I. et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).
Li, Z. Y. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 12, 675–683 (2017).
Rephaeli, E., Raman, A. & Fan, S. H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).
Raman, A. P. et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).
Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).
Tang, K. C. et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374, 1504–1509 (2021).
Wu, R. H. et al. Spectrally engineered textile for radiative cooling against urban heat islands. Science 384, 1203–1212 (2024).
Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).
Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).
Zhang, L. et al. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818–833 (2016).
Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).
Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).
Schulz, S. A. et al. Roadmap on photonic metasurfaces. Appl. Phys. Lett. 124, 260701 (2024).
Kuznetsov, A. I. et al. Roadmap for optical metasurfaces. ACS Photonics 11, 816–865 (2024).
Ha, S. T. et al. Optoelectronic metadevices. Science 386, eadm7442 (2024).
Huang, Y. W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).
Park, J. et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).
Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021).
Kaissner, R. et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci. Adv. 7, eabd9450 (2021).
Ko, B. et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat. Commun. 13, 6256 (2022).
Moon, C. W., Kim, Y. & Hyun, J. K. Active electrochemical high-contrast gratings as on/off switchable and color tunable pixels. Nat. Commun. 13, 3391 (2022).
Yoon, J. et al. Chemically and geometrically programmable photoreactive polymers for transformational humidity-sensitive full-color devices. Nat. Commun. 15, 6470 (2024).
Ko, B. et al. Hydrogels for active photonics. Microsyst. Nanoeng. 10, 1 (2024).
Kang, D. et al. Liquid crystal-integrated metasurfaces for an active photonic platform. Opto-Electron. Adv. 7, 230216 (2024).
Lu, W. Z. et al. Active Huygens’ metasurface based on in-situ grown conductive polymer. Nanophotonics 13, 39–49 (2024).
Doshi, S. et al. Electrochemically mutable soft metasurfaces. Nat. Mater. 24, 205–211 (2025).
Jung, C., Lee, E. & Rho, J. The rise of electrically tunable metasurfaces. Sci. Adv. 10, eado8964 (2024).
Howes, A. et al. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787–792 (2018).
Komar, A. et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 5, 1742–1748 (2018).
Cong, L. Q. et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl. 7, 28 (2018).
Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Zhang, F. et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv. Mater. 32, 1908194 (2020).
Karst, J. et al. Electrically switchable metallic polymer nanoantennas. Science 374, 612–616 (2021).
Jin, Y. et al. Electrochemically driven dynamic plasmonics. Adv. Photonics 3, 044002 (2021).
Zhang, Y. F. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).
Bifano, T. MEMS deformable mirrors. Nat. Photonics 5, 21–23 (2011).
Jung, C. et al. Metasurface-driven optically variable devices. Chem. Rev. 121, 13013–13050 (2021).
Jeon, N. et al. Electrically tunable metasurfaces: from direct to indirect mechanisms. N. J. Phys. 24, 075001 (2022).
Gu, T. et al. Reconfigurable metasurfaces towards commercial success. Nat. Photonics 17, 48–58 (2023).
Ko, J. H. et al. A review of tunable photonics: Optically active materials and applications from visible to terahertz. iScience 25, 104727 (2022).
Dicken, M. J. et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 17, 18330–18339 (2009).
Kocer, H. et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl. Phys. Lett. 106, 161104 (2015).
Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019).
Howes, A. et al. Optical limiting based on huygens’ metasurfaces. Nano Lett. 20, 4638–4644 (2020).
Li, Q. Z. et al. Thin-film radiative thermal diode with large rectification. Phys. Rev. Appl. 16, 014069 (2021).
Chen, S. Z. et al. Conductive polymer nanoantennas for dynamic organic plasmonics. Nat. Nanotechnol. 15, 35–40 (2020).
Karki, A. et al. Electrical tuning of plasmonic conducting polymer nanoantennas. Adv. Mater. 34, 2107172 (2022).
Chen, T. H. et al. A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation. PNAS Nexus 2, pgad165 (2023).
Li, Q. Z., Chen, T. H. & Hsu, P. C. Use electrochemistry to charge the next dynamic thermal metamaterials. Energy 3, 100108 (2024).
Tao, X. et al. Reversible metal electrodeposition devices: an emerging approach to effective light modulation and thermal management. Adv. Opt. Mater. 9, 2001847 (2021).
Barile, C. J. et al. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 1, 133–145 (2017).
Strand, M. T. et al. Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation. Nat. Energy 6, 546–554 (2021).
Wang, G. P. et al. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).
Li, M. Y. et al. Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6, eaba3494 (2020).
Rao, Y. F. et al. Ultra-wideband transparent conductive electrode for electrochromic synergistic solar and radiative heat management. ACS Energy Lett. 6, 3906–3915 (2021).
Sui, C. et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 6, 428–437 (2023).
Jin, Y. et al. Electrical dynamic switching of magnetic plasmon resonance based on selective lithium deposition. Adv. Mater. 32, 2000058 (2020).
Zhang, S. T. et al. Reversible electrical switching of nanostructural color pixels. Nanophotonics 12, 1387–1395 (2023).
Zhang, Y. F. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279 (2019).
Derkaoui, I. et al. VO2 thin films for smart windows: numerical study of the optical properties and performance improvement. J. Phys.: Conf. Ser. 1292, 012010 (2019).
Delaney, M. et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 30, 2002447 (2020).
Liu, H. L. et al. Rewritable color nanoprints in antimony trisulfide films. Sci. Adv. 6, eabb7171 (2020).
Barker, A. S. Jr., Verleur, H. W. & Guggenheim, H. J. Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys. Rev. Lett. 17, 1286–1289 (1966).
Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973).
Ordal, M. A. et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985).
Querry, M. R. Optical constants of minerals and other materials from the millimeter to the ultraviolet (U.S. Army Report CRDEC-CR-88009, 1987).
Barbero, C. & Kötz, R. Nanoscale dimensional changes and optical properties of polyaniline measured by in situ spectroscopic ellipsometry. J. Electrochem. Soc. 141, 859–865 (1994).
Michel, A. K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).
Yang, H. U. et al. Optical dielectric function of silver. Phys. Rev. B 91, 235137 (2015).
Zheng, J. J. et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 8, 1551–1561 (2018).
Li, Z. Y. et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett. 15, 1615–1621 (2015).
Li, Z. Y. et al. Ultrawide angle, directional spectrum splitting with visible-frequency versatile metasurfaces. Adv. Opt. Mater. 4, 953–958 (2016).
Yu, N. F. et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011).
Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).
Hernandez, T. S. et al. Electrolyte for improved durability of dynamic windows based on reversible metal electrodeposition. Joule 4, 1501–1513 (2020).
Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).
Cai, W. S. & Shalaev, V. Optical Metamaterials: Fundamentals and Applications (New York: Springer, 2010).
Slobozhanyuk, A. P. et al. Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater. 28, 1832–1838 (2016).
Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).
Kim, J. et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev. 16, 2200098 (2022).
Schoen, D. T., Holsteen, A. L. & Brongersma, M. L. Probing the electrical switching of a memristive optical antenna by STEM EELS. Nat. Commun. 7, 12162 (2016).
Vasista, A. B., Sharma, D. K. & Kumar, G. V. P. Fourier plane optical microscopy and spectroscopy. In Encyclopedia of Applied Physics (ed. Trigg, G. L.) (Weinheim: Wiley-VCH, 2019).
Zheng, J. X. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).
Zhou, W. J. et al. Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly. Proc. Natl. Acad. Sci. USA 117, 21052–21057 (2020).
Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).
Sherrott, M. C. et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017).
Horie, Y. et al. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics 5, 1711–1717 (2018).
Li, Q. T. et al. A Purcell-enabled monolayer semiconductor free-space optical modulator. Nat. Photonics 17, 897–903 (2023).
Guarneri, L. et al. Dynamic excitonic beam switching with atomically-thin binary blazed gratings. Adv. Opt. Mater. 13, 2403257 (2025).
Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).
Shirmanesh, G. K. et al. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).
Mansha, S. et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci. Appl. 11, 141 (2022).
Yin, X. H. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6, e17016 (2017).
Choi, C. et al. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch. Adv. Opt. Mater. 7, 1900171 (2019).
Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun. 12, 3614 (2021).
Sisler, J. et al. Electrically tunable space–time metasurfaces at optical frequencies. Nat. Nanotechnol. 19, 1491–1498 (2024).
Li, J. X. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv. 4, eaar6768 (2018).
de Galarreta, C. R. et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater. 28, 1704993 (2018).
Ratzsch, J. et al. Electrically switchable metasurface for beam steering using PEDOT polymers. J. Opt. 22, 124001 (2020).
Li, Z. et al. Actively switchable beam-steering via hydrophilic/hydrophobic-selective design of water-immersed metasurface. Adv. Opt. Mater. 9, 2100297 (2021).