• Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Waters, D. et al. Flat bands and mechanical deformation effects in the moiré superlattice of MoS2-WSe2 heterobilayers. ACS Nano 14, 7564–7573 (2020).

    Article 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).

    Article 

    Google Scholar
     

  • Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article 

    Google Scholar
     

  • Anderson, E. et al. Programming correlated magnetic states via gate controlled moiré geometry. Science 381, 325–330 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).


    Google Scholar
     

  • Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Ferromagnetism and topology of the higher flat band in a fractional Chern insulator. Nat. Phys. https://doi.org/10.1038/s41567-025-02804-0 (2025).

  • Xu, F. et al. Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2. Nat. Phys. https://doi.org/10.1038/s41567-025-02803-1 (2025).

  • Foutty, B. A. et al. Mapping twist-tuned multi-band topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. et al. Mapping charge excitations in generalized Wigner crystals. Nat. Nanotechnol. 19, 618–623 (2024).

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).

  • Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578–583 (2024).

  • Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).

    Article 

    Google Scholar
     

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Molino, L. et al. Ferroelectric switching at symmetry-broken interfaces by local control of dislocations networks. Adv. Mater. 35, 2207816 (2023).

  • Zhang, S. et al. Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures. Nat. Commun. 14, 6200 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

    Article 

    Google Scholar
     

  • McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Enaldiev, V. V. et al. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett. 15, 6494–6500 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pan, Y. et al. Quantum-confined electronic states arising from moiré pattern of MoS2-WSe2 heterobilayers. Nano Lett. 18, 1849–1855 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tilak, N., Li, G., Taniguchi, T., Watanabe, K. & Andrei, E. Y. Moiré potential, lattice relaxation, and layer polarization in marginally twisted MoS2 bilayers. Nano Lett. 23, 73–81 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Al Ezzi, M. M., Pallewela, G. N., De Beule, C., Mele, E. J., & Adam, S. Analytical model for atomic relaxation in twisted moiré materials. Phys. Rev. Lett. 133, 266201 (2024).

  • Zhao, W. et al. Direct measurement of the electronic structure and band gap nature of atomic-layer-thick 2H-MoTe2. Preprint at https://doi.org/10.48550/arXiv.2001.05894 (2020).

  • Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-vib transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mao, N. et al. Transfer learning relaxation, electronic structure and continuum model for twisted bilayer MoTe2. Commun. Phys. 7, 262 (2024).

  • Wang, T. et al. Topology, magnetism and charge order in twisted MoTe2 at higher integer hole fillings. Preprint at https://doi.org/10.48550/arXiv.2312.12531 (2023).

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Jia, Y. et al. Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2. Phys. Rev. B 109, 205121 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ahn, C.-E., Lee, W., Yananose, K., Kim, Y. & Cho, G. Y. First Landau level physics in second moiré band of 2.1° twisted bilayer MoTe2. Preprint at https://arxiv.org/html/2403.19155v1 (2024).

  • Xu, C., Mao, N., Zeng, T. & Zhang, Y. Multiple Chern bands in twisted MoTe2 and possible non-abelian states. Preprint at https://doi.org/10.48550/arXiv.2403.17003 (2024).

  • Liu, Z. et al. Continuously tunable uniaxial strain control of van der Waals heterostructure devices. J. Appl. Phys. 135, 204306 (2024).

  • Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174 (2019).

    Article 

    Google Scholar
     

  • Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    Article 
    ADS 

    Google Scholar
     

  • Li, G., Luican, A. & Andrei, E. Y. Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample. Rev. Sci. Instrum. 82, 073701 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Li, G., Luican, A. & Andrei, E. Y. Scanning tunneling spectroscopy of graphene on graphite. Phys. Rev. Lett. 102, 176804 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Selloni, A., Carnevali, P., Tosatti, E. & Chen, C. D. Voltage-dependent scanning-tunneling microscopy of a crystal surface: graphite. Phys. Rev. B 31, 2602–2605 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Huder, L., Mesple, F. & Renard, V. T. Scanning tunneling microscopy analysis in Python. Zenodo https://doi.org/10.5281/zenodo.7991365 (2023).

  • Artaud, A. et al. Universal classification of twisted, strained and sheared graphene moiré superlattices. Sci. Rep. 6, 25670 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Huder, L. et al. Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 

    Google Scholar
     

  • Soler, J. M. et al. The siesta method for ab initio order-n materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS 

    Google Scholar
     

  • Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Aftab, S. et al. Carrier polarity modulation of molybdenum ditelluride (MoTe2) for phototransistor and switching photodiode applications. Nanoscale 12, 15687–15696 (2020).

    Article 

    Google Scholar
     

  • Mleczko, M. J. et al. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 19, 6352–6362 (2019). PMID: 31314531.

    Article 
    ADS 

    Google Scholar
     

  • Yu, Y.-J. et al. Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430–3434 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article 
    ADS 

    Google Scholar