• Nam, N. N. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article 

    Google Scholar
     

  • Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z., Cazeaux, P., Luskin, M. & Kaxiras, E. Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures. Phys. Rev. B 101, 224107 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nakatsuji, N., Kawakami, T. & Koshino, M. Multiscale lattice relaxation in general twisted trilayer graphenes. Phys. Rev. X 13, 041007 (2023).

    CAS 

    Google Scholar
     

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerelsky, A. et al. Moiréless correlations in ABCA graphene. Proc. Natl Acad. Sci. USA 118, e2017366118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Woods, C. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, I., Blanter, Y. M. & Morpurgo, A. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Qiao, Z., Jung, J., Niu, Q. & MacDonald, A. H. Electronic highways in bilayer graphene. Nano Lett. 11, 3453 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • San-Jose, P. & Prada, E. Helical networks in twisted bilayer graphene under interlayer bias. Phys. Rev. B 88, 121408 (2013).

    Article 

    Google Scholar
     

  • Rickhaus, P. et al. Transport through a network of topological channels in twisted bilayer graphene. Nano Lett. 18, 6725 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, S. et al. Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. Nat. Commun. 10, 4008 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Strong interactions and isospin symmetry breaking in a supermoiré lattice. Science 389, 36–740 (2025).

    Article 

    Google Scholar
     

  • Hesp, N. C. et al. Cryogenic nano-imaging of second-order moiré superlattices. Nat. Mater. 23, 1664–1670 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mora, C., Regnault, N. & Bernevig, B. A. Flatbands and perfect metal in trilayer moiré graphene. Phys. Rev. Lett. 123, 026402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z., Carr, S., Massatt, D., Luskin, M. & Kaxiras, E. Twisted trilayer graphene: a precisely tunable platform for correlated electrons. Phys. Rev. Lett. 125, 116404 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Y., Guerci, D. & Mora, C. Supermoiré low-energy effective theory of twisted trilayer graphene. Phys. Rev. B 107, 125423 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Devakul, T. et al. Magic-angle helical trilayer graphene. Sci. Adv. 9, eadi6063 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerci, D., Mao, Y. & Mora, C. Chern mosaic and ideal flat bands in equal-twist trilayer graphene. Phys. Rev. Res. 6, L022025 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Guerci, D., Mao, Y. & Mora, C. Nature of even and odd magic angles in helical twisted trilayer graphene. Phys. Rev. B 109, 205411 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C., May-Mann, J., Zhu, Z. & Devakul, T. Multi-moiré trilayer graphene: lattice relaxation, electronic structure, and magic angles. Phys. Rev. B 110, 115434 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xia, L.-Q. et al. Topological bands and correlated states in helical trilayer graphene. Nat. Phys. 21, 239–244 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Popov, F. K. & Tarnopolsky, G. Magic angles in equal-twist trilayer graphene. Phys. Rev. B 108, L081124 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kwan, Y. H., Ledwith, P. J., Lo, C. F. B. & Devakul, T. Strong-coupling topological states and phase transitions in helical trilayer graphene. Phys. Rev. B 109, 125141 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Datta, A., Guerci, D., Goerbig, M. O. & Mora, C. Helical trilayer graphene in magnetic field: Chern mosaic and higher Chern number ideal flat bands. Phys. Rev. B 110, 075417 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Spin skyrmion gaps as signatures of strong-coupling insulators in magic-angle twisted bilayer graphene. Nat. Commun. 14, 6679 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X., Zhang, N. J., Watanabe, K., Taniguchi, T. & Li, J. Isospin order in superconducting magic-angle twisted trilayer graphene. Nat. Phys. 18, 522–527 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, W. et al. Tunable inter-moiré physics in consecutively twisted trilayer graphene. Phys. Rev. B 110, 115404 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 592, 43–48 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Randeria, M. T. et al. Interacting multi-channel topological boundary modes in a quantum Hall valley system. Nature 566, 363–367 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kwan, Y. H., Tan, T. & Devakul, T. Fractional Chern mosaic in supermoiré graphene. Phys. Rev. Res. 7, L032070 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoke, J. Imaging supermoiré relaxation in helical trilayer graphene. Zenodo https://doi.org/10.5281/zenodo.17365682 (2025).