Dhanabalan, B. et al. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 14, 4689–4697 (2020).
Zhang, T. et al. Regulation of the luminescence mechanism of two-dimensional tin halide perovskites. Nat. Commun. 13, 60 (2022).
Duan, J. et al. 2D hybrid perovskites: from static and dynamic structures to potential applications. Adv. Mater. 36, 2403455 (2024).
Kirstein, E. et al. Coherent spin dynamics of electrons in two-dimensional (PEA)2PbI4 perovskites. Nano Lett. 23, 205–212 (2023).
Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015).
Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).
Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).
Cuthriell, S. A. et al. Nonequilibrium lattice dynamics in photoexcited 2D perovskites. Adv. Mater. 34, 2202709 (2022).
Guo, P. et al. Direct observation of bandgap oscillations induced by optical phonons in hybrid lead iodide perovskites. Adv. Funct. Mater. 30, 1907982 (2020).
Batignani, G. et al. Probing femtosecond lattice displacement upon photo-carrier generation in lead halide perovskite. Nat. Commun. 9, 1971 (2018).
Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).
Blancon, J.-C., Even, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).
Tao, W., Zhang, C., Zhou, Q., Zhao, Y. & Zhu, H. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat. Commun. 12, 1400 (2021).
Srimath Kandada, A. R. & Silva, C. Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett. 11, 3173–3184 (2020).
Zhang, X. et al. Ultrafast exciton–phonon coupling and energy transfer dynamics in quasi-2D layered Ruddlesden–Popper perovskites. Commun. Phys. 8, 71 (2025).
Debnath, T. et al. Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals. Nat. Commun. 12, 2629 (2021).
Fu, J. et al. Electronic states modulation by coherent optical phonons in 2D halide perovskites. Adv. Mater. 33, 2006233 (2021).
Wall, S. et al. Ultrafast changes in lattice symmetry probed by coherent phonons. Nat. Commun. 3, 721 (2012).
Biswas, S. et al. Exciton polaron formation and hot-carrier relaxation in rigid Dion–Jacobson-type two-dimensional perovskites. Nat. Mater. 23, 937–943 (2024).
Qin, T. et al. Coherent exciton spin relaxation dynamics and exciton polaron character in layered two-dimensional lead-halide perovskites. ACS Nano 19, 4186–4194 (2025).
Zhou, C. & Zhou, J. Vibrational-anharmonicity-assisted phase transitions in perovskite oxides under terahertz irradiation. Phys. Rev. Appl. 20, 024020 (2023).
Zeiger, H. J. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).
Meier, Q. N. et al. Manifestation of structural Higgs and Goldstone modes in the hexagonal manganites. Phys. Rev. B 102, 014102 (2020).
Jain, A. et al. Higgs mode and its decay in a two-dimensional antiferromagnet. Nat. Phys. 13, 633–637 (2017).
Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).
Sherman, D. et al. The Higgs mode in disordered superconductors close to a quantum phase transition. Nat. Phys. 11, 188–192 (2015).
Haldar, A., Cortes, C. L., Gray, S. K., Sharifzadeh, S. & Darancet, P. Giant optomechanical coupling in the charge density wave state of tantalum disulfide. Preprint at https://arxiv.org/abs/2105.08874 (2021).
Menahem, M. et al. Strongly anharmonic octahedral tilting in two-dimensional hybrid halide perovskites. ACS Nano 15, 10153–10162 (2021).
Dhamija, S., Bhutani, G., Jayachandran, A. & De, A. K. A revisit on impulsive stimulated Raman spectroscopy: importance of spectral dispersion of chirped broadband probe. J. Phys. Chem. A 126, 1019–1032 (2022).
Pedesseau, L. et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016).
Juraschek, D. M., Meier, Q. N. & Narang, P. Parametric excitation of an optically silent Goldstone-like phonon mode. Phys. Rev. Lett. 124, 117401 (2020).
Haldar, A., Huang, Z., Ma, X., Darancet, P. & Sharifzadeh, S. Excitation protocols for nonlinear phononics in bismuth and antimony. Phys. Rev. Mater. 8, 015202 (2024).
Ruppin, R. Electromagnetic energy density in a dispersive and absorptive material. Phys. Lett. A 299, 309–312 (2002).
Babaian, D., Hill, D., Yu, P. & Guha, S. Carrier relaxation and exciton dynamics in chemical-vapor-deposited two-dimensional hybrid halide perovskites. J. Mater. Chem. C 13, 193–202 (2025).
Drueke, E., Yang, J. & Zhao, L. Observation of strong and anisotropic nonlinear optical effects through polarization-resolved optical spectroscopy in the type-II Weyl semimetal Td-WTe2. Phys. Rev. B 104, 064304 (2021).
Giorgianni, F. et al. Terahertz displacive excitation of a coherent Raman-active phonon in V2O3. Commun. Phys. 5, 103 (2022).
Liu, S. et al. Nanoscale coherent phonon spectroscopy. Sci. Adv. 8, eabq5682 (2022).
Makino, K. et al. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material. Sci. Rep. 6, 19758 (2016).
Warner, J. A., Patil, S. K. R., Khare, S. V. & Masiulaniec, K. C. Ab initio calculations for properties of MAX phases Ti2TlC, Zr2TlC, and Hf2TlC. Appl. Phys. Lett. 88, 101911 (2006).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396–1396 (1997).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Appl. Crystallogr. 44, 1272–1276 (2011).
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).
Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn 92, 012001 (2023).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).