Bloch, M.E. and J.G. Schneider. M.E. Blochii, Systema ichthyologiae iconibus CX illustratum. Vol. [Atlas]. Berolini: Sumtibus auctoris impressum et Bibliopolio Sanderiano commissum. (Bavarian State Library, 1801).
Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702 (2016).
Nielsen, J., Hedeholm, R. B., Simon, M. & Steffensen, J. F. Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biol. 37, 37–46 (2014).
Mecklenburg, C. et al. Marine Fishes of the Arctic Region. Conservation of Arctic Flora and Fauna. Vol. 1. Akureyri, Iceland. (2018).
MacNeil, M. A. et al. Biology of the Greenland shark Somniosus microcephalus. J. Fish. Biol. 80, 991–1018 (2012).
Berland, B. Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland Shark—a possible cause of mutual dependence. Nature 191, 829–830 (1961).
Kabata, Z. Parasitic Copepoda of British Fishes. (Ray Society, 1979).
Borucinska, J. D., Benz, G. W. & Whiteley, H. E. Ocular lesions associated with attachment of the parasitic copepod Ommatokoita elongata (Grant) to corneas of Greenland sharks, Somniosus microcephalus (Bloch & Schneider). J. Fish. Dis. 21, 415–422 (1998).
Skomal, G. B. & Benz, G. W. Ultrasonic tracking of Greenland sharks, Somniosus microcephalus, under Arctic ice. Mar. Biol. 145, 489–498 (2004).
Nielsen, J. et al. Greenland Shark (Somniosus microcephalus) stomach contents and stable isotope values reveal an ontogenetic dietary shift. Front. Mar. Sci. 6, 125 (2019).
Lamb, T. D. Why rods and cones? Eye 30, 179–85 (2016).
Lamb, T. D. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin. Eye Res. 36, 52–119 (2013).
de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. 106, 20–30 (2020).
Fogg, L. G. et al. Development of dim-light vision in the nocturnal reef fish family Holocentridae I: retinal gene expression. J. Exp. Biol. 225, jeb244513 (2022).
Fogg, L. G. et al. Development of dim-light vision in the nocturnal reef fish family Holocentridae II: retinal morphology. J. Exp. Biol. 225, jeb244740 (2022).
Fogg, L. G. et al. Deep-sea fish reveal alternative pathway for vertebrate visual development. bioRxiv: 2024.10.10.617579. https://doi.org/10.1101/2024.10.10.617579 (2024).
Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Develop. Biol. 106, 31–42 (2020).
Lythgoe, J. N. The Ecology of Vision. (Clarendon Press, 1979).
Munz, F.W. and W.N. McFarland, Evolutionary Adaptations of Fishes to the Photic Environment, in The Visual System in Vertebrates. (Springer-Verlag, 1977).
Carleton, K. L., Dalton, B. E., Escobar-Camacho, D. & Nandamuri, S. P. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 54, 299–325 (2016).
Carleton, K. L., Escobar-Camacho, D., Stieb, S. M., Cortesi, F. & Marshall, N. J. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb193334 (2020).
Musilova, Z., Salzburger, W. & Cortesi, F. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annu. Rev. Cell Develop. Biol. 37, 441–468 (2021).
Hauzman, E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin. Cell Develop. Biol. 106, 86–93 (2020).
de Busserolles, F. & Marshall, N. J. Seeing in the deep-sea: visual adaptations in lanternfishes. Philos Trans R Soc Lond B Biol Sci. 372, https://doi.org/10.1098/rstb.2016.0070 (2017).
Delroisse, J., Duchatelet, L., Flammang, P. & Mallefet, J. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 13, e0209767 (2018).
Claes, J. M. et al. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PloS one 9, e104213 (2014).
Denton, E. J. & Shaw, T. I. The visual pigments of some deep-sea elasmobranchs. J. Mar. Biol. Assoc. U.K. 43, 65–70 (1963).
Newman, A. S., Marshall, J. N. & Collin, S. P. Visual eyes: a quantitative analysis of the photoreceptor layer in deep-sea sharks. Brain Behav. Evol. 82, 237–249 (2013).
Hart, N. S. Vision in sharks and rays: opsin diversity and colour vision. Semin. Cell Develop. Biol. 106, 12–19 (2020).
Policarpo, M. et al. Contrasting gene decay in subterranean vertebrates: insights from cavefishes and fossorial mammals. Mol. Biol. Evol. 38, 589–605 (2020).
Simon, N., Fujita, S., Porter, M. & Yoshizawa, M. Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish. PeerJ 7, e8148 (2019).
Protas, M. & Jeffery, W. R. Evolution and development in cave animals: from fish to crustaceans. WIREs Develop. Biol. 1, 823–845 (2012).
Stokesbury, M., Harvey-Clark, C., Hay Gallant, J., Block, B. & Myers, R. Movement and environmental preferences of Greenland sharks (Somniosus microcephalus) electronically tagged in the St. Lawrence Estuary, Canada. Mar. Biol. 148, 159–165 (2005).
Edwards, J. E. et al. Advancing research for the management of long-lived species: a case study on the greenland shark. Front. Mar. Sci. 6, 87 (2019).
Yopak, K. E. et al. Comparative brain morphology of the greenland and pacific sleeper sharks and its functional implications. Sci. Rep. 9, 10022 (2019).
Bartas, M. et al. RNA analysis of the longest living vertebrate Greenland shark revealed an abundance of LINE-like elements in its transcriptome. Czech Polar Rep. 13, 17 (2024).
Peel, L. R., Collin, S. P. & Hart, N. S. Retinal topography and spectral sensitivity of the Port Jackson shark (Heterodontus portusjacksoni). J. Comp. Neurol. 528, 2831–2847 (2020).
Schieber, N. L., Collin, S. P. & Hart, N. S. Comparative retinal anatomy in four species of elasmobranch. J. Morphol. 273, 423–440 (2012).
Kumar, P. et al. Experimental oral iron administration: histological investigations and expressions of iron handling proteins in rat retina with aging. Toxicology 392, 22–31 (2017).
Narasimhan, A. et al. The Ercc1(-/Δ) mouse model of XFE progeroid syndrome undergoes accelerated retinal degeneration. Aging Cell 15, e14419 (2024).
Nag, T. C., Maurya, M. & Roy, T. S. Age-related changes of the human retinal vessels: possible involvement of lipid peroxidation. Ann. Anat. 226, 35–47 (2019).
Cho, N. C., Poulsen, G. L., Ver Hoeve, J. N. & Nork, T. M. Selective loss of S-cones in diabetic retinopathy. Arch. Ophthalmol. 118, 1393–400 (2000).
Gao, H. & Hollyfield, J. G. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol. Vis. Sci. 33, 1–17 (1992).
Curcio, C. A., Millican, C. L., Allen, K. A. & Kalina, R. E. Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol. Vis. Sci. 34, 3278–96 (1993).
Curcio, C. A. & Drucker, D. N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 33, 248–257 (1993).
Freed, J. et al. The elephant retina examined across a range of ages. bioRxiv: 2021.01.20.427452. https://doi.org/10.1101/2021.01.20.427452 (2021).
da Silva, R., Conde, D. A., Baudisch, A. & Colchero, F. Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science 376, 1466–1470 (2022).
Do, M. T. H. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104, 205–226 (2019).
Musilova, Z. et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588–592 (2019).
Lupše, N. et al. Visual gene expression reveals a cone-to-rod developmental progression in deep-sea fishes. Mol. Biol. Evol. 38, 5664–5677 (2021).
Bacchet, P., T. Zysman and Y. Lefevre. Guide des poissons de Tahiti et ses iles. 4th ed. (Tahiti, 2016).
Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish. Biol. 88, 837–1037 (2016).
Bianchi, G. et al. Field Guide to the Living Marine Resources of Namibia. FAO species identification guide for fishery purposes. (FAO, 1999).
Capapé, C. et al. Maturity, fecundity and occurrence of the smallspotted catshark Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) off the Languedocian coast (southern France, north-western Mediterranean). Vie et Milieu/Life & Environ. 58, 47–55 (2008).
Ito, N., Fujii, M., Nohara, K. & Tanaka, S. Scyliorhinus hachijoensis, a new species of catshark from the Izu Islands, Japan (Carcharhiniformes: Scyliorhinidae). Zootaxa 5092, 331–349 (2022).
Hart, N. S. et al. Widespread and convergent evolution of cone monochromacy in galeomorph sharks. Mol. Biol. Evol. 42, https://doi.org/10.1093/molbev/msaf043 (2025).
Yamaguchi, K., Koyanagi, M. & Kuraku, S. Visual and nonvisual opsin genes of sharks and other nonosteichthyan vertebrates: Genomic exploration of underwater photoreception. J. Evol. Biol. 34, 968–976 (2021).
Hart, N. S. et al. Visual opsin diversity in sharks and rays. Mol. Biol. Evol. 37, 811–827 (2019).
Pan, D., Wang, Z., Chen, Y. & Cao, J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun. Biol. 6, 1054 (2023).
Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).
Altimus, C. M. et al. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat. Neurosci. 13, 1107–1112 (2010).
Fisk, A. T., Lydersen, C. & Kovacs, K. M. Archival pop-off tag tracking of Greenland sharks Somniosus microcephalus in the High Arctic waters of Svalbard, Norway. Mar. Ecol. Prog. Ser. 468, 255–265 (2012).
Telese, F., Gamliel, A., Skowronska-Krawczyk, D., Garcia-Bassets, I. & Rosenfeld, M. G. “Seq-ing” insights into the epigenetics of neuronal gene regulation. Neuron 77, 606–23 (2013).
Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009).
Chao, D. L. & Skowronska-Krawczyk, D. ELOVL2: Not just a biomarker of aging. Transl. Med. Aging 4, 78–80 (2020).
Vidal-Vázquez, N. et al. A single-nucleus RNA sequencing atlas of the postnatal retina of the shark Scyliorhinus canicula. Sci. Data 12, 228 (2025).
Lewandowski, D. et al. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog. Retin Eye Res 89, 101037 (2022).
Agbaga, M.-P. et al. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J. Lipid Res. 59, 1586–1596 (2018).
Sander, C. L. et al. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol. 220, https://doi.org/10.1083/jcb.202101063 (2021).
Winnikoff, J. R., Haddock, S. H. D. & Budin, I. Depth- and temperature-specific fatty acid adaptations in ctenophores from extreme habitats. J Exp Biol. 224, https://doi.org/10.1242/jeb.242800 (2021).
Dasyani, M. et al. Elovl2 is required for robust visual function in zebrafish. Cells 9, 2583 (2020).
Gao, F. et al. Retinal polyunsaturated fatty acid supplementation reverses aging-related vision decline in mice. Sci. Transl. Med. 17, eads5769 (2025).
Winnikoff, J. R. & Budin, I. Homeocurvature: a new dimension of membrane adaptation to extreme environments. Prog. Lipid Res. 100, 101355 (2025).
Soja-Woźniak, M. et al. Loss of sea ice alters light spectra for aquatic photosynthesis. Nat. Commun. 16, 4059 (2025).
Firsanov, D. et al. Evidence for improved DNA repair in long-lived bowhead whale. Nature 648, 717–725 (2025).
Bardwell, A. J., Bardwell, L., Tomkinson, A. E. & Friedberg, E. C. Specific cleavage of model recombination and repair intermediates by the Yeast Rad1-Rad10 DNA endonuclease. Science 265, 2082–2085 (1994).
Davies, A. A., Friedberg, E. C., Tomkinson, A. E., Wood, R. D. & West, S. C. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J. Biol. Chem. 270, 24638–24641 (1995).
Radford, S. J., Goley, E., Baxter, K., McMahan, S. & Sekelsky, J. Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics 170, 1737–45 (2005).
Klein Douwel, D. et al. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–71 (2014).
Kikuchi, K. et al. Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Res. 73, 4362–4371 (2013).
Zaksauskaite, R., Thomas, R. C., van Eeden, F. & El-Khamisy, S. F. Tdp1 protects from topoisomerase 1–mediated chromosomal breaks in adult zebrafish but is dispensable during larval development. Sci. Adv. 7, eabc4165 (2021).
Cleaver, J. E., Lam, E. T. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10, 756–768 (2009).
Bishop, S., Francis, M., Duffy, C. & Montgomery, J. Age, growth, maturity, longevity and natural mortality of the shortfin mako shark (Isurus oxyrinchus) in New Zealand waters. Mar. Freshw. Res. 57, 143–154 (2006).
Perry, C. T. et al. Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar. Freshw. Res. 69, 1487–1495 (2018).
Moreira, I. et al. Growth and maturity of the lesser-spotted dogfish (Linnaeus, 1758) in the southern Portuguese continental coast. J. Fish. Biol. 100, 315–319 (2022).
Michael, S. W. Reef sharks and rays of the world. A guide to their identification, behaviour, and ecology. 2009/05/11 ed. Sea challengers. J. Mar. Biol. Assoc. UK 73, 99–102 (1993).
Chen, W., Chen, P., Liu, K.-M. & Wang, S.-B. Age and growth estimates of the Whitespotted Bamboo Shark, Chiloscyllium plagiosum, in the Northern Waters of Taiwan. Zool. Stud. 46, 92–102 (2007).
Fahmi, W. et al. Age and growth of the tropical oviparous shark, Chiloscyllium punctatum in Indonesian waters. J. Fish. Biol. 99, 921–930 (2021).
Cardiff, R. D., Miller, C. H. & Munn, R. J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 655–8 (2014).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–23 (2009).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5, 113 (2004).
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–3 (2009).
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 19, 153 (2018).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Mayeur, H. et al. The Sensory Shark: High-quality Morphological, Genomic and Transcriptomic Data for the Small-spotted Catshark Scyliorhinus Canicula Reveal the Molecular Bases of Sensory Organ Evolution in Jawed Vertebrates. Mol. Biol. Evol. 41, https://doi.org/10.1093/molbev/msae246 (2024).
Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).
Yamaguchi, K. et al. Elasmobranch genome sequencing reveals evolutionary trends of vertebrate karyotype organization. Genome Res 33, 1527–1540 (2023).
Stanhope, M. J. et al. Genomes of endangered great hammerhead and shortfin mako sharks reveal historic population declines and high levels of inbreeding in great hammerhead. iScience 26, 105815 (2023).
Zhang, Y. et al. The White-Spotted bamboo shark genome reveals chromosome rearrangements and fast-evolving immune genes of cartilaginous fish. iScience 23, 101754 (2020).
Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 51, D445–d451 (2023).
Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).
Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–d26 (2022).
Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Dainat, J. Another Gtf/Gff analysis toolkit (AGAT): resolve interoperability issues and accomplish more with your annotations. In Plant and Animal Genome XXIX Conference. (NBS, 2022).
Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2014).
Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–53 (2015).
Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2004).
Xu, Q. et al. Stress induced aging in mouse eye. Aging Cell 21, e13737 (2022).
Gao, F., Tom, E., Lieffrig, S. A., Finnemann, S. C. and Skowronska-Krawczyk, D. A novel quantification method for retinal pigment epithelium phagocytosis using a very-long-chain polyunsaturated fatty acids-based strategy. Front Mol Neurosci. 16, 1279457 (2023).
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–7 (1959).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–9 (2015).
R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2022).