• Bloch, M.E. and J.G. Schneider. M.E. Blochii, Systema ichthyologiae iconibus CX illustratum. Vol. [Atlas]. Berolini: Sumtibus auctoris impressum et Bibliopolio Sanderiano commissum. (Bavarian State Library, 1801).

  • Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nielsen, J., Hedeholm, R. B., Simon, M. & Steffensen, J. F. Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biol. 37, 37–46 (2014).

    Article 

    Google Scholar
     

  • Mecklenburg, C. et al. Marine Fishes of the Arctic Region. Conservation of Arctic Flora and Fauna. Vol. 1. Akureyri, Iceland. (2018).

  • MacNeil, M. A. et al. Biology of the Greenland shark Somniosus microcephalus. J. Fish. Biol. 80, 991–1018 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Berland, B. Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland Shark—a possible cause of mutual dependence. Nature 191, 829–830 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Kabata, Z. Parasitic Copepoda of British Fishes. (Ray Society, 1979).

  • Borucinska, J. D., Benz, G. W. & Whiteley, H. E. Ocular lesions associated with attachment of the parasitic copepod Ommatokoita elongata (Grant) to corneas of Greenland sharks, Somniosus microcephalus (Bloch & Schneider). J. Fish. Dis. 21, 415–422 (1998).

    Article 

    Google Scholar
     

  • Skomal, G. B. & Benz, G. W. Ultrasonic tracking of Greenland sharks, Somniosus microcephalus, under Arctic ice. Mar. Biol. 145, 489–498 (2004).

    Article 

    Google Scholar
     

  • Nielsen, J. et al. Greenland Shark (Somniosus microcephalus) stomach contents and stable isotope values reveal an ontogenetic dietary shift. Front. Mar. Sci. 6, 125 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lamb, T. D. Why rods and cones? Eye 30, 179–85 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lamb, T. D. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin. Eye Res. 36, 52–119 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. 106, 20–30 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fogg, L. G. et al. Development of dim-light vision in the nocturnal reef fish family Holocentridae I: retinal gene expression. J. Exp. Biol. 225, jeb244513 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogg, L. G. et al. Development of dim-light vision in the nocturnal reef fish family Holocentridae II: retinal morphology. J. Exp. Biol. 225, jeb244740 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogg, L. G. et al. Deep-sea fish reveal alternative pathway for vertebrate visual development. bioRxiv: 2024.10.10.617579. https://doi.org/10.1101/2024.10.10.617579 (2024).

  • Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Develop. Biol. 106, 31–42 (2020).

    Article 

    Google Scholar
     

  • Lythgoe, J. N. The Ecology of Vision. (Clarendon Press, 1979).

  • Munz, F.W. and W.N. McFarland, Evolutionary Adaptations of Fishes to the Photic Environment, in The Visual System in Vertebrates. (Springer-Verlag, 1977).

  • Carleton, K. L., Dalton, B. E., Escobar-Camacho, D. & Nandamuri, S. P. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 54, 299–325 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carleton, K. L., Escobar-Camacho, D., Stieb, S. M., Cortesi, F. & Marshall, N. J. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb193334 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musilova, Z., Salzburger, W. & Cortesi, F. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annu. Rev. Cell Develop. Biol. 37, 441–468 (2021).

    Article 

    Google Scholar
     

  • Hauzman, E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin. Cell Develop. Biol. 106, 86–93 (2020).

    Article 

    Google Scholar
     

  • de Busserolles, F. & Marshall, N. J. Seeing in the deep-sea: visual adaptations in lanternfishes. Philos Trans R Soc Lond B Biol Sci. 372, https://doi.org/10.1098/rstb.2016.0070 (2017).

  • Delroisse, J., Duchatelet, L., Flammang, P. & Mallefet, J. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 13, e0209767 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claes, J. M. et al. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PloS one 9, e104213 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denton, E. J. & Shaw, T. I. The visual pigments of some deep-sea elasmobranchs. J. Mar. Biol. Assoc. U.K. 43, 65–70 (1963).

    Article 

    Google Scholar
     

  • Newman, A. S., Marshall, J. N. & Collin, S. P. Visual eyes: a quantitative analysis of the photoreceptor layer in deep-sea sharks. Brain Behav. Evol. 82, 237–249 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hart, N. S. Vision in sharks and rays: opsin diversity and colour vision. Semin. Cell Develop. Biol. 106, 12–19 (2020).

    Article 

    Google Scholar
     

  • Policarpo, M. et al. Contrasting gene decay in subterranean vertebrates: insights from cavefishes and fossorial mammals. Mol. Biol. Evol. 38, 589–605 (2020).

  • Simon, N., Fujita, S., Porter, M. & Yoshizawa, M. Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish. PeerJ 7, e8148 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Protas, M. & Jeffery, W. R. Evolution and development in cave animals: from fish to crustaceans. WIREs Develop. Biol. 1, 823–845 (2012).

    Article 

    Google Scholar
     

  • Stokesbury, M., Harvey-Clark, C., Hay Gallant, J., Block, B. & Myers, R. Movement and environmental preferences of Greenland sharks (Somniosus microcephalus) electronically tagged in the St. Lawrence Estuary, Canada. Mar. Biol. 148, 159–165 (2005).

    Article 

    Google Scholar
     

  • Edwards, J. E. et al. Advancing research for the management of long-lived species: a case study on the greenland shark. Front. Mar. Sci. 6, 87 (2019).

  • Yopak, K. E. et al. Comparative brain morphology of the greenland and pacific sleeper sharks and its functional implications. Sci. Rep. 9, 10022 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartas, M. et al. RNA analysis of the longest living vertebrate Greenland shark revealed an abundance of LINE-like elements in its transcriptome. Czech Polar Rep. 13, 17 (2024).

  • Peel, L. R., Collin, S. P. & Hart, N. S. Retinal topography and spectral sensitivity of the Port Jackson shark (Heterodontus portusjacksoni). J. Comp. Neurol. 528, 2831–2847 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schieber, N. L., Collin, S. P. & Hart, N. S. Comparative retinal anatomy in four species of elasmobranch. J. Morphol. 273, 423–440 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, P. et al. Experimental oral iron administration: histological investigations and expressions of iron handling proteins in rat retina with aging. Toxicology 392, 22–31 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Narasimhan, A. et al. The Ercc1(-/Δ) mouse model of XFE progeroid syndrome undergoes accelerated retinal degeneration. Aging Cell 15, e14419 (2024).

  • Nag, T. C., Maurya, M. & Roy, T. S. Age-related changes of the human retinal vessels: possible involvement of lipid peroxidation. Ann. Anat. 226, 35–47 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, N. C., Poulsen, G. L., Ver Hoeve, J. N. & Nork, T. M. Selective loss of S-cones in diabetic retinopathy. Arch. Ophthalmol. 118, 1393–400 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, H. & Hollyfield, J. G. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol. Vis. Sci. 33, 1–17 (1992).

    PubMed 

    Google Scholar
     

  • Curcio, C. A., Millican, C. L., Allen, K. A. & Kalina, R. E. Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol. Vis. Sci. 34, 3278–96 (1993).

    PubMed 

    Google Scholar
     

  • Curcio, C. A. & Drucker, D. N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 33, 248–257 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Freed, J. et al. The elephant retina examined across a range of ages. bioRxiv: 2021.01.20.427452. https://doi.org/10.1101/2021.01.20.427452 (2021).

  • da Silva, R., Conde, D. A., Baudisch, A. & Colchero, F. Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science 376, 1466–1470 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Do, M. T. H. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104, 205–226 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musilova, Z. et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588–592 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupše, N. et al. Visual gene expression reveals a cone-to-rod developmental progression in deep-sea fishes. Mol. Biol. Evol. 38, 5664–5677 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bacchet, P., T. Zysman and Y. Lefevre. Guide des poissons de Tahiti et ses iles. 4th ed. (Tahiti, 2016).

  • Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish. Biol. 88, 837–1037 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bianchi, G. et al. Field Guide to the Living Marine Resources of Namibia. FAO species identification guide for fishery purposes. (FAO, 1999).

  • Capapé, C. et al. Maturity, fecundity and occurrence of the smallspotted catshark Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) off the Languedocian coast (southern France, north-western Mediterranean). Vie et Milieu/Life & Environ. 58, 47–55 (2008).

  • Ito, N., Fujii, M., Nohara, K. & Tanaka, S. Scyliorhinus hachijoensis, a new species of catshark from the Izu Islands, Japan (Carcharhiniformes: Scyliorhinidae). Zootaxa 5092, 331–349 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hart, N. S. et al. Widespread and convergent evolution of cone monochromacy in galeomorph sharks. Mol. Biol. Evol. 42, https://doi.org/10.1093/molbev/msaf043 (2025).

  • Yamaguchi, K., Koyanagi, M. & Kuraku, S. Visual and nonvisual opsin genes of sharks and other nonosteichthyan vertebrates: Genomic exploration of underwater photoreception. J. Evol. Biol. 34, 968–976 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hart, N. S. et al. Visual opsin diversity in sharks and rays. Mol. Biol. Evol. 37, 811–827 (2019).

    Article 

    Google Scholar
     

  • Pan, D., Wang, Z., Chen, Y. & Cao, J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun. Biol. 6, 1054 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Altimus, C. M. et al. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat. Neurosci. 13, 1107–1112 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisk, A. T., Lydersen, C. & Kovacs, K. M. Archival pop-off tag tracking of Greenland sharks Somniosus microcephalus in the High Arctic waters of Svalbard, Norway. Mar. Ecol. Prog. Ser. 468, 255–265 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Telese, F., Gamliel, A., Skowronska-Krawczyk, D., Garcia-Bassets, I. & Rosenfeld, M. G. “Seq-ing” insights into the epigenetics of neuronal gene regulation. Neuron 77, 606–23 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Chao, D. L. & Skowronska-Krawczyk, D. ELOVL2: Not just a biomarker of aging. Transl. Med. Aging 4, 78–80 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal-Vázquez, N. et al. A single-nucleus RNA sequencing atlas of the postnatal retina of the shark Scyliorhinus canicula. Sci. Data 12, 228 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewandowski, D. et al. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog. Retin Eye Res 89, 101037 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Agbaga, M.-P. et al. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J. Lipid Res. 59, 1586–1596 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sander, C. L. et al. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol. 220, https://doi.org/10.1083/jcb.202101063 (2021).

  • Winnikoff, J. R., Haddock, S. H. D. & Budin, I. Depth- and temperature-specific fatty acid adaptations in ctenophores from extreme habitats. J Exp Biol. 224, https://doi.org/10.1242/jeb.242800 (2021).

  • Dasyani, M. et al. Elovl2 is required for robust visual function in zebrafish. Cells 9, 2583 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, F. et al. Retinal polyunsaturated fatty acid supplementation reverses aging-related vision decline in mice. Sci. Transl. Med. 17, eads5769 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Winnikoff, J. R. & Budin, I. Homeocurvature: a new dimension of membrane adaptation to extreme environments. Prog. Lipid Res. 100, 101355 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Soja-Woźniak, M. et al. Loss of sea ice alters light spectra for aquatic photosynthesis. Nat. Commun. 16, 4059 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Firsanov, D. et al. Evidence for improved DNA repair in long-lived bowhead whale. Nature 648, 717–725 (2025).

  • Bardwell, A. J., Bardwell, L., Tomkinson, A. E. & Friedberg, E. C. Specific cleavage of model recombination and repair intermediates by the Yeast Rad1-Rad10 DNA endonuclease. Science 265, 2082–2085 (1994).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Davies, A. A., Friedberg, E. C., Tomkinson, A. E., Wood, R. D. & West, S. C. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J. Biol. Chem. 270, 24638–24641 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Radford, S. J., Goley, E., Baxter, K., McMahan, S. & Sekelsky, J. Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics 170, 1737–45 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein Douwel, D. et al. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–71 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kikuchi, K. et al. Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Res. 73, 4362–4371 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaksauskaite, R., Thomas, R. C., van Eeden, F. & El-Khamisy, S. F. Tdp1 protects from topoisomerase 1–mediated chromosomal breaks in adult zebrafish but is dispensable during larval development. Sci. Adv. 7, eabc4165 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cleaver, J. E., Lam, E. T. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10, 756–768 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bishop, S., Francis, M., Duffy, C. & Montgomery, J. Age, growth, maturity, longevity and natural mortality of the shortfin mako shark (Isurus oxyrinchus) in New Zealand waters. Mar. Freshw. Res. 57, 143–154 (2006).

    Article 

    Google Scholar
     

  • Perry, C. T. et al. Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar. Freshw. Res. 69, 1487–1495 (2018).

    Article 

    Google Scholar
     

  • Moreira, I. et al. Growth and maturity of the lesser-spotted dogfish (Linnaeus, 1758) in the southern Portuguese continental coast. J. Fish. Biol. 100, 315–319 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Michael, S. W. Reef sharks and rays of the world. A guide to their identification, behaviour, and ecology. 2009/05/11 ed. Sea challengers. J. Mar. Biol. Assoc. UK 73, 99–102 (1993).

  • Chen, W., Chen, P., Liu, K.-M. & Wang, S.-B. Age and growth estimates of the Whitespotted Bamboo Shark, Chiloscyllium plagiosum, in the Northern Waters of Taiwan. Zool. Stud. 46, 92–102 (2007).


    Google Scholar
     

  • Fahmi, W. et al. Age and growth of the tropical oviparous shark, Chiloscyllium punctatum in Indonesian waters. J. Fish. Biol. 99, 921–930 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cardiff, R. D., Miller, C. H. & Munn, R. J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 655–8 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–23 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5, 113 (2004).

    Article 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–3 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 19, 153 (2018).

    Article 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayeur, H. et al. The Sensory Shark: High-quality Morphological, Genomic and Transcriptomic Data for the Small-spotted Catshark Scyliorhinus Canicula Reveal the Molecular Bases of Sensory Organ Evolution in Jawed Vertebrates. Mol. Biol. Evol. 41, https://doi.org/10.1093/molbev/msae246 (2024).

  • Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yamaguchi, K. et al. Elasmobranch genome sequencing reveals evolutionary trends of vertebrate karyotype organization. Genome Res 33, 1527–1540 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanhope, M. J. et al. Genomes of endangered great hammerhead and shortfin mako sharks reveal historic population declines and high levels of inbreeding in great hammerhead. iScience 26, 105815 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. The White-Spotted bamboo shark genome reveals chromosome rearrangements and fast-evolving immune genes of cartilaginous fish. iScience 23, 101754 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 51, D445–d451 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–d26 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).

    Article 

    Google Scholar
     

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dainat, J. Another Gtf/Gff analysis toolkit (AGAT): resolve interoperability issues and accomplish more with your annotations. In Plant and Animal Genome XXIX Conference. (NBS, 2022).

  • Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–53 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, Q. et al. Stress induced aging in mouse eye. Aging Cell 21, e13737 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, F., Tom, E., Lieffrig, S. A., Finnemann, S. C. and Skowronska-Krawczyk, D. A novel quantification method for retinal pigment epithelium phagocytosis using a very-long-chain polyunsaturated fatty acids-based strategy. Front Mol Neurosci. 16, 1279457 (2023).

  • Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–7 (1959).

    Article 
    PubMed 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–9 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2022).