Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).
Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Polski, R. et al. Hierarchy of symmetry breaking correlated phases in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2205.05225 (2022).
He, M. et al. Strongly interacting Hofstadter states in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1380–1386 (2025).
Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).
Liu, M., Liu, Z., Cao, J. & Wang, C. Properties of the optical response of the twisted bilayer graphene. Phys. B 675, 415609 (2024).
Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).
Gierz, I. et al. Snapshots of non-equilibrium dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).
Di Battista, G. et al. Revealing the thermal properties of superconducting magic-angle twisted bilayer graphene. Nano Lett. 22, 6465–6470 (2022).
Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).
Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).
Yang, C., Esin, I., Lewandowski, C. & Refael, G. Optical control of slow topological electrons in moiré systems. Phys. Rev. Lett. 131, 026901 (2023).
Krishna Kumar, R. et al. Terahertz photocurrent probe of quantum geometry and interactions in magic-angle twisted bilayer graphene. Nat. Mater. 24, 1034–1041 (2025).
Lin, J.-X. et al. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).
Trovatello, C. et al. Ultrafast hot carrier transfer in WS2/graphene large-area heterostructures. npj 2D Mater. Appl. 6, 24 (2022).
Stepanov, P. et al. Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Phys. Rev. Lett. 127, 197701 (2021).
Tseng, C.-C. et al. Anomalous Hall effect at half filling in twisted bilayer graphene. Nat. Phys. 18, 1038–1042 (2022).
Bhowmik, S. et al. Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2. Nat. Commun. 14, 4055 (2023).
Xie, T. et al. Long-lived isospin excitations in magic-angle twisted bilayer graphene. Nature 633, 77–82 (2024).
Wagner, G., Kwan, Y. H., Bultinck, N., Simon, S. H. & Parameswaran, S. A. Global phase diagram of the normal state of twisted bilayer graphene. Phys. Rev. Lett. 128, 156401 (2022).
Breiø, C. N. & Andersen, B. M. Chern insulator phases and spontaneous spin and valley order in a moiré lattice model for magic-angle twisted bilayer graphene. Phys. Rev. B 107, 165114 (2023).
Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).
Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).
Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).
Gorchon, J., Yang, Y. & Bokor, J. Model for multishot all-thermal all-optical switching in ferromagnets. Phys. Rev. B 94, 020409 (2016).
Fernández-Rossier, J., Piermarocchi, C., Chen, P., MacDonald, A. H. & Sham, L. J. Coherently photoinduced ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 93, 127201 (2004).
Tesarová, N. et al. Experimental observation of the optical spin–orbit torque. Nat. Photon. 7, 492–498 (2013).
Pitaevskii, L. P. Electric forces in a transparent dispersive medium.Sov. Phys. JETP 12, 1008–1013 (1961).
van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965).
Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).
Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).
Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).
Zhang, P. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 21, 1373–1378 (2022).
Xie, T. et al. High-efficiency optical training of itinerant two-dimensional magnets. Nat. Phys. 21, 1118–1124 (2025).
Ghosh, B. et al. Probing quantum geometry through optical conductivity and magnetic circular dichroism. Sci. Adv. 10, eado1761 (2024).
Sharma, P. & Balatsky, A. V. Light-induced orbital magnetism in metals via inverse Faraday effect. Phys. Rev. B 110, 094302 (2024).
Cheng, O. H.-C., Son, D. H. & Sheldon, M. Light-induced magnetism in plasmonic gold nanoparticles. Nat. Photon. 14, 365–368 (2020).
Ortiz Jimenez, V. et al. Transition metal dichalcogenides: making atomic-level magnetism tunable with light at room temperature. Adv. Sci. 11, 2304792 (2024).
Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).
Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Vol. 8 (Pergamon Press, 1984).
Hertel, R. Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303, L1–L4 (2006).
Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).
Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).
He, M. et al. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. Nat. Mater. 23, 224–229 (2024).
You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).
He, C. et al. Nonlinear optical response in graphene/WX2 (X = S, Se, and Te) van der Waals heterostructures. J. Phys. Chem. Lett. 10, 2090–2100 (2019).
Kleiner, A., Hernangómez-Pérez, D. & Refaely-Abramson, S. Designable exciton mixing through layer alignment in WS2–graphene heterostructures. npj 2D Mater. Appl. 8, 36 (2024).
Stefani, F. D., Hoogenboom, J. P. & Barkai, E. Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 62, 34–39 (2009).
Adhikari, S. et al. Magnetization switching of single magnetite nanoparticles monitored optically. Nano Lett. 24, 9861–9867 (2024).
Fisher, D. S. Scaling and critical slowing down in random-field Ising systems. Phys. Rev. Lett. 56, 416–419 (1986).
Bittel, H. Noise of ferromagnetic materials. IEEE Trans. Magn. 5, 359–365 (1969).
Bonetti, J. A., Caplan, D. S., Van Harlingen, D. J. & Weissman, M. B. Electronic transport in underdoped YBa2Cu3O7−δ nanowires: evidence for fluctuating domain structures. Phys. Rev. Lett. 93, 087002 (2004).
Carlson, E. W., Dahmen, K. A., Fradkin, E. & Kivelson, S. A. Hysteresis and noise from electronic nematicity in high-temperature superconductors. Phys. Rev. Lett. 96, 097003 (2006).
Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).
Deng, B. et al. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photon. 14, 549–553 (2020).
Di Battista, G. et al. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. Sci. Adv. 10, eadp3725 (2024).
Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).
Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 1999).