• Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Polski, R. et al. Hierarchy of symmetry breaking correlated phases in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2205.05225 (2022).

  • He, M. et al. Strongly interacting Hofstadter states in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1380–1386 (2025).

    Article 

    Google Scholar
     

  • Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liu, M., Liu, Z., Cao, J. & Wang, C. Properties of the optical response of the twisted bilayer graphene. Phys. B 675, 415609 (2024).

    Article 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article 

    Google Scholar
     

  • Gierz, I. et al. Snapshots of non-equilibrium dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Di Battista, G. et al. Revealing the thermal properties of superconducting magic-angle twisted bilayer graphene. Nano Lett. 22, 6465–6470 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).

    Article 

    Google Scholar
     

  • Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yang, C., Esin, I., Lewandowski, C. & Refael, G. Optical control of slow topological electrons in moiré systems. Phys. Rev. Lett. 131, 026901 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Krishna Kumar, R. et al. Terahertz photocurrent probe of quantum geometry and interactions in magic-angle twisted bilayer graphene. Nat. Mater. 24, 1034–1041 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Lin, J.-X. et al. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Trovatello, C. et al. Ultrafast hot carrier transfer in WS2/graphene large-area heterostructures. npj 2D Mater. Appl. 6, 24 (2022).

  • Stepanov, P. et al. Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Phys. Rev. Lett. 127, 197701 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tseng, C.-C. et al. Anomalous Hall effect at half filling in twisted bilayer graphene. Nat. Phys. 18, 1038–1042 (2022).

    Article 

    Google Scholar
     

  • Bhowmik, S. et al. Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2. Nat. Commun. 14, 4055 (2023).

  • Xie, T. et al. Long-lived isospin excitations in magic-angle twisted bilayer graphene. Nature 633, 77–82 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wagner, G., Kwan, Y. H., Bultinck, N., Simon, S. H. & Parameswaran, S. A. Global phase diagram of the normal state of twisted bilayer graphene. Phys. Rev. Lett. 128, 156401 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Breiø, C. N. & Andersen, B. M. Chern insulator phases and spontaneous spin and valley order in a moiré lattice model for magic-angle twisted bilayer graphene. Phys. Rev. B 107, 165114 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Gorchon, J., Yang, Y. & Bokor, J. Model for multishot all-thermal all-optical switching in ferromagnets. Phys. Rev. B 94, 020409 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Fernández-Rossier, J., Piermarocchi, C., Chen, P., MacDonald, A. H. & Sham, L. J. Coherently photoinduced ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 93, 127201 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Tesarová, N. et al. Experimental observation of the optical spin–orbit torque. Nat. Photon. 7, 492–498 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Pitaevskii, L. P. Electric forces in a transparent dispersive medium.Sov. Phys. JETP 12, 1008–1013 (1961).

    MathSciNet 

    Google Scholar
     

  • van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965).

    Article 
    ADS 

    Google Scholar
     

  • Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, P. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 21, 1373–1378 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xie, T. et al. High-efficiency optical training of itinerant two-dimensional magnets. Nat. Phys. 21, 1118–1124 (2025).

    Article 

    Google Scholar
     

  • Ghosh, B. et al. Probing quantum geometry through optical conductivity and magnetic circular dichroism. Sci. Adv. 10, eado1761 (2024).

  • Sharma, P. & Balatsky, A. V. Light-induced orbital magnetism in metals via inverse Faraday effect. Phys. Rev. B 110, 094302 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, O. H.-C., Son, D. H. & Sheldon, M. Light-induced magnetism in plasmonic gold nanoparticles. Nat. Photon. 14, 365–368 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ortiz Jimenez, V. et al. Transition metal dichalcogenides: making atomic-level magnetism tunable with light at room temperature. Adv. Sci. 11, 2304792 (2024).

    Article 

    Google Scholar
     

  • Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Vol. 8 (Pergamon Press, 1984).

  • Hertel, R. Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303, L1–L4 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

    Article 

    Google Scholar
     

  • He, M. et al. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. Nat. Mater. 23, 224–229 (2024).

    Article 
    ADS 

    Google Scholar
     

  • You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

    Article 

    Google Scholar
     

  • He, C. et al. Nonlinear optical response in graphene/WX2 (X = S, Se, and Te) van der Waals heterostructures. J. Phys. Chem. Lett. 10, 2090–2100 (2019).

    Article 

    Google Scholar
     

  • Kleiner, A., Hernangómez-Pérez, D. & Refaely-Abramson, S. Designable exciton mixing through layer alignment in WS2–graphene heterostructures. npj 2D Mater. Appl. 8, 36 (2024).

  • Stefani, F. D., Hoogenboom, J. P. & Barkai, E. Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 62, 34–39 (2009).

    Article 

    Google Scholar
     

  • Adhikari, S. et al. Magnetization switching of single magnetite nanoparticles monitored optically. Nano Lett. 24, 9861–9867 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Fisher, D. S. Scaling and critical slowing down in random-field Ising systems. Phys. Rev. Lett. 56, 416–419 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Bittel, H. Noise of ferromagnetic materials. IEEE Trans. Magn. 5, 359–365 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Bonetti, J. A., Caplan, D. S., Van Harlingen, D. J. & Weissman, M. B. Electronic transport in underdoped YBa2Cu3O7−δ nanowires: evidence for fluctuating domain structures. Phys. Rev. Lett. 93, 087002 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Carlson, E. W., Dahmen, K. A., Fradkin, E. & Kivelson, S. A. Hysteresis and noise from electronic nematicity in high-temperature superconductors. Phys. Rev. Lett. 96, 097003 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Deng, B. et al. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photon. 14, 549–553 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Di Battista, G. et al. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. Sci. Adv. 10, eadp3725 (2024).

  • Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 1999).