• Ang, B. W., Choong, W. L. & Ng, T. S. Energy security: definitions, dimensions and indexes. Renew. Sustain. Energy Rev. 42, 1077–1093 (2015).

    Article 

    Google Scholar
     

  • Le, T.-H. & Nguyen, C. P. Is energy security a driver for economic growth? Evidence from a global sample. Energy Policy 129, 436–451 (2019).

    Article 

    Google Scholar
     

  • Guan, Y. et al. Burden of the global energy price crisis on households. Nat. Energy 8, 304–316 (2023).

    Article 

    Google Scholar
     

  • Cherp, A. & Jewell, J. The concept of energy security: beyond the four As. Energy Policy 75, 415–421 (2014).

    Article 

    Google Scholar
     

  • Sovacool, B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jewell, J., Cherp, A. & Riahi, K. Energy security under de-carbonization scenarios: an assessment framework and evaluation under different technology and policy choices. Energy Policy 65, 743–760 (2014).

    Article 

    Google Scholar
     

  • McCollum, D. L. et al. Climate policies can help resolve energy security and air pollution challenges. Clim. Change 119, 479–494 (2013).

    Article 

    Google Scholar
     

  • Matsumoto, K. I., Doumpos, M. & Andriosopoulos, K. Historical energy security performance in EU countries. Renew. Sustain. Energy Rev. 82, 1737–1748 (2018).

    Article 

    Google Scholar
     

  • Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl Acad. Sci. USA 108, 18554–18559 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yergin, D. The Prize: The Epic Quest for Oil, Money & Power (Free Press, 2011).

  • Sherwin, E. D., Henrion, M. & Azevedo, I. M. L. Estimation of the year-on-year volatility and the unpredictability of the United States energy system. Nat. Energy 3, 341–346 (2018).

    Article 

    Google Scholar
     

  • Umar, M., Riaz, Y. & Yousaf, I. Impact of Russian-Ukraine war on clean energy, conventional energy, and metal markets: evidence from event study approach. Resour. Policy 79, 102966 (2022).

  • Liu, Z. et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 11, 5172 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Clarke, L. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 6 (Cambridge Univ. Press, 2022).

  • World energy outlook 2022. An updated roadmap to net zero emissions by 2050. International Energy Agency www.iea.org/reports/world-energy-outlook-2022 (2022).

  • Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Chang. 5, 519–527 (2015).

    Article 

    Google Scholar
     

  • DeAngelo, J. et al. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 12, 6096 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Renewable energy market update – May 2022. Outlook for 2022 and 2023. International Energy Agency www.iea.org/reports/renewable-energy-market-update-may-2022 (2022).

  • Valentine, S. V. Emerging symbiosis: renewable energy and energy security. Renew. Sustain. Energy Rev. 15, 4572–4578 (2011).

    Article 

    Google Scholar
     

  • Lee, J. et al. Reviewing the material and metal security of low-carbon energy transitions. Renew. Sustain. Energy Rev. 124, 109789 (2020).

  • Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Article 

    Google Scholar
     

  • Bazilian, M. D. The mineral foundation of the energy transition. Extr. Ind. Soc. 5, 93–97 (2018).


    Google Scholar
     

  • Owen, J. R. et al. Energy transition minerals and their intersection with land-connected peoples. Nat. Sustain. 6, 203–211 (2023).

    Article 

    Google Scholar
     

  • Hund, K. L., La Porta, D., Fabregas, T. P., Laing, T. & Drexhage, J. R. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition (World Bank Group, 2020).

  • The role of critical minerals in clean energy transitions. International Energy Agency www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (2022).

  • Global supply chains of EV batteries. International Energy Agency www.iea.org/reports/global-supply-chains-of-ev-batteries (2022).

  • Berdysheva, S. & Ikonnikova, S. The energy transition and shifts in fossil fuel use: the study of international energy trade and energy security dynamics. Energies 14, 5396 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chaturvedi, V. Energy security and climate change: friends with asymmetric benefits. Nat. Energy 1, 16075 (2016).

  • Jewell, J. et al. Comparison and interactions between the long-term pursuit of energy independence and climate policies. Nat. Energy 1, 16073 (2016).

    Article 

    Google Scholar
     

  • Toke, D. & Vezirgiannidou, S.-E. The relationship between climate change and energy security: key issues and conclusions. Environmental Politics 22, 537–552 (2013).

    Article 

    Google Scholar
     

  • Chalvatzis, K. J. & Ioannidis, A. Energy supply security in the EU: benchmarking diversity and dependence of primary energy. Appl. Energy 207, 465–476 (2017).

    Article 

    Google Scholar
     

  • van Vliet, O. et al. Synergies in the Asian energy system: climate change, energy security, energy access and air pollution. Energy Econ. 34, 470–480 (2012).

    Article 

    Google Scholar
     

  • Viviescas, C. et al. Contribution of variable renewable energy to increase energy security in Latin America: complementarity and climate change impacts on wind and solar resources. Renew. Sustain. Energy Rev. 113, 109232 (2019).

    Article 

    Google Scholar
     

  • Alemzero, D. A. et al. Assessing energy security in Africa based on multi-dimensional approach of principal composite analysis. Environ. Sci. Pollut. Res. Int. 28, 2158–2171 (2021).

    Article 

    Google Scholar
     

  • Gulagi, A. et al. The role of renewables for rapid transitioning of the power sector across states in India. Nat. Commun. 13, 5499 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oshiro, K., Kainuma, M. & Masui, T. Assessing decarbonization pathways and their implications for energy security policies in Japan. Climate Policy 16, 63–77 (2016).

    Article 

    Google Scholar
     

  • Wang, B., Wang, Q., Wei, Y. M. & Li, Z. P. Role of renewable energy in China’s energy security and climate change mitigation: an index decomposition analysis. Renew. Sustain. Energy Rev. 90, 187–194 (2018).

    Article 

    Google Scholar
     

  • Hamed, T. A. & Bressler, L. Energy security in Israel and Jordan: the role of renewable energy sources. Renewable Energy 135, 378–389 (2019).

    Article 

    Google Scholar
     

  • Vieira, M. A. & Dalgaard, K. G. The energy-security–climate-change nexus in Brazil. Environmental Politics 22, 610–626 (2013).

    Article 

    Google Scholar
     

  • Bang, G. Energy security and climate change concerns: triggers for energy policy change in the United States? Energy Policy 38, 1645–1653 (2010).

    Article 

    Google Scholar
     

  • Jewell, J. et al. Energy security of China, India, the E.U. and the U.S. under long-term scenarios: results from six IAMs. Clim. Change Econ. 4, 1–33 (2014).


    Google Scholar
     

  • Brezina, I., Pekár, J., Čičková, Z. & Reiff, M. Herfindahl–Hirschman index level of concentration values modification and analysis of their change. Cent. Eur. J. Oper. Res. 24, 49–72 (2016).

    Article 

    Google Scholar
     

  • Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Byers, E. et al. AR6 scenarios database. Zenodo https://doi.org/10.5281/zenodo.5886911 (2022).

    Article 

    Google Scholar
     

  • World energy outlook 2021. International Energy Agency www.iea.org/reports/world-energy-outlook-2021 (2022).

  • Latest statistics. United Nations Conference on Trade and Development https://unctadstat.unctad.org/EN (2025).

  • United Nations Statistics Division. United Nations Comtrade Database (United Nations, accessed 12 November 2024); https://comtradeplus.un.org/

  • National Minerals Information Center. U.S. Geological Survey mineral commodity summaries 2023 data release: U.S. Geological Survey data release (USGS, 2023, accessed 15 November 2024); https://doi.org/10.5066/P9WCYUI6

  • Statistical review of world energy. BP www.bp.com/en/global/corporate/energy-economics.html (2022).

  • Cheng, A. L., Fuchs, E. R. H., Karplus, V. J. & Michalek, J. J. Electric vehicle battery chemistry affects supply chain disruption vulnerabilities. Nat. Commun. 15, 2143 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gilmer, D. B. et al. Additive manufacturing of strong silica sand structures enabled by polyethyleneimine binder. Nat. Commun. 12, 5144 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tian, F. et al. Recent advances in electrochemical-based silicon production technologies with reduced carbon emission. Research 6, 0142 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gabriel, D. et al. Natural Gas in Europe: The Potential Impact of Disruptions to Supply (International Monetary Fund, 2022).

  • Zakeri, B. et al. Pandemic, war, and global energy transitions. Energies 15, 6144 (2022).

    Article 

    Google Scholar
     

  • Lei, Y. et al. Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy. Nat. Clim. Change 13, 693–700 (2023).

    Article 

    Google Scholar
     

  • Liu, L. et al. Climate change impacts on planned supply–demand match in global wind and solar energy systems. Nat. Energy 8, 870–880 (2023).

    Article 

    Google Scholar
     

  • Panteli, M. & Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies. Electr. Power Syst. Res. 127, 259–270 (2015).

    Article 

    Google Scholar
     

  • Carley, S. & Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Żuk, P. & Żuk, P. National energy security or acceleration of transition? Energy policy after the war in Ukraine. Joule 6, 709–712 (2022).

    Article 

    Google Scholar
     

  • Kalantzakos, S. China and the Geopolitics of Rare Earths (Oxford Univ. Press, 2017).

  • Amineh, M. P. & Houweling, H. Global energy security and its geopolitical impediments—the case of the Caspian region. Perspect. Glob. Dev. Technol. 6, 365–388 (2007).

    Article 

    Google Scholar
     

  • Lebre, E. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 4823 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vera, M. L., Torres, W. R., Galli, C. I., Chagnes, A. & Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 4, 149–165 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Franks, D. M., Keenan, J. & Hailu, D. Mineral security essential to achieving the Sustainable Development Goals. Nat. Sustain. 6, 21–27 (2022).

    Article 

    Google Scholar
     

  • Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J. et al. Code for ‘Trade risks to energy security in net-zero emissions energy scenarios’. Zenodo https://doi.org/10.5281/zenodo.8165867 (2025).

  • Arvesen, A., Birkeland, C. & Hertwich, E. G. The importance of ships and spare parts in LCAs of offshore wind power. Environ. Sci. Technol. 47, 2948–2956 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jorge, R. S., Hawkins, T. R. & Hertwich, E. G. Life cycle assessment of electricity transmission and distribution—part 1: power lines and cables. Int. J. Life Cycle Assess. 17, 9–15 (2011).

    Article 

    Google Scholar
     

  • Chen, Z., Kleijn, R. & Lin, H. X. Metal requirements for building electrical grid systems of global wind power and utility-scale solar photovoltaic until 2050. Environ. Sci. Technol. 57, 1080–1091 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Annual generator-level capacity information. Form EIA-860 detailed data with previous form data (EIA-860A/860B). US Energy Information Administration www.eia.gov/electricity/data/eia860/ (2024).

  • Aguilar Lopez, F., Lauinger, D., Vuille, F. & Muller, D. B. On the potential of vehicle-to-grid and second-life batteries to provide energy and material security. Nat. Commun. 15, 4179 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. Nat. Commun. https://doi.org/10.1038/s41467-022-35393-0 (2023).

  • Cheng, J. et al. Trade risks to energy security in net-zero emissions energy scenarios. figshare https://doi.org/10.6084/m9.figshare.28466435.v1 (2025).