• Huang, K. Introduction to Statistical Physics 2nd edn (CRC, 2010).

  • Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

  • Nambu, Y. & Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Goldstone, J. Field theories with ‘superconductor’ solutions. Il Nuovo Cimento (1955-1965) 19, 154–164 (1961).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Goldstone, J., Salam, A. & Weinberg, S. Broken symmetries. Phys. Rev. 127, 965–970 (1962).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Lange, R. V. Nonrelativistic theorem analogous to the Goldstone theorem. Phys. Rev. 146, 301–303 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Takahashi, D. A. & Nitta, M. Counting rule of Nambu-Goldstone modes for internal and spacetime symmetries: Bogoliubov theory approach. Ann. Phys. 354, 101–156 (2015).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Gunton, J. D. & Buckingham, M. J. Condensation of the ideal Bose gas as a cooperative transition. Phys. Rev. 166, 152–158 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  • Steinhauer, J., Ozeri, R., Katz, N. & Davidson, N. Excitation spectrum of a Bose-Einstein condensate. Phys. Rev. Lett. 88, 120407 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Schmittmann, B. & Zia, R. Statistical Mechanics of Driven Diffusive Systems (Elsevier, 1995).

  • Hidaka, Y. & Minami, Y. Spontaneous symmetry breaking and Nambu-Goldstone modes in open classical and quantum systems. Prog. Theor. Exp. Phys. 2020, 033A01 (2020).

  • Bloch, J., Carusotto, I. & Wouters, M. Non-equilibrium Bose-Einstein condensation in photonic systems. Nat. Rev. Phys. 4, 470–488 (2022).

    Article 

    Google Scholar
     

  • Graham, R. & Haken, H. The quantum-fluctuations of the optical parametric oscillator. I. Z. Phys. A: Hadrons Nucl. 210, 276–302 (1968).

    Article 

    Google Scholar
     

  • DeGiorgio, V. & Scully, M. O. Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. A 2, 1170–1177 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Graham, R. & Haken, H. Laserlight—first example of a second-order phase transition far away from thermal equilibrium. Z. Phys. 237, 31–46 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Grossmann, S. & Richter, P. H. Laser threshold and nonlinear Landau fluctuation theory of phase transitions. Z. Phys. A: Hadrons Nucl. 242, 458–475 (1971).

    Article 

    Google Scholar
     

  • Baumberg, J. et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 62, R16247 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Szymańska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Wouters, M. & Carusotto, I. Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime. Phys. Rev. A 76, 043807 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Keeling, J., Szymańska, M. H. & Littlewood, P. B. in Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures (eds Slavcheva, G. & Roussignol, P.) 293–329 (Springer, 2010).

  • Dunnett, K. & Szymańska, M. H. Keldysh field theory for nonequilibrium condensation in a parametrically pumped polariton system. Phys. Rev. B 93, 195306 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Carusotto, I. & Ciuti, C. Spontaneous microcavity-polariton coherence across the parametric threshold: quantum Monte Carlo studies. Phys. Rev. B 72, 125335 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Stepanov, P. et al. Dispersion relation of the collective excitations in a resonantly driven polariton fluid. Nat. Commun. 10, 3869 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Claude, F. et al. High-resolution coherent probe spectroscopy of a polariton quantum fluid. Phys. Rev. Lett. 129, 103601 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chow, W. W., Scully, M. O. & Van Stryland, E. W. Line narrowing in a symmetry broken laser. Opt. Commun. 15, 6–9 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Courtois, J., Smith, A., Fabre, C. & Reynaud, S. Phase diffusion and quantum noise in the optical parametric oscillator: a semiclassical approach. J. Mod. Opt. 38, 177–191 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Baas, A., Karr, J.-P., Romanelli, M., Bramati, A. & Giacobino, E. Quantum degeneracy of microcavity polaritons. Phys. Rev. Lett. 96, 176401 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Aßmann, M. et al. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl Acad. Sci. USA 108, 1804–1809 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Nakayama, M. & Ueda, M. Observation of diffusive and dispersive profiles of the nonequilibrium polariton-condensate dispersion relation in a CuBr microcavity. Phys. Rev. B 95, 125315 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ballarini, D. et al. Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Phys. Rev. Lett. 102, 056402 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Pieczarka, M. et al. Observation of quantum depletion in a non-equilibrium exciton-polariton condensate. Nat. Commun. 11, 429 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Estrecho, E. et al. Low-energy collective oscillations and Bogoliubov sound in an exciton-polariton condensate. Phys. Rev. Lett. 126, 075301 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ballarini, D. et al. Directional Goldstone waves in polariton condensates close to equilibrium. Nat. Commun. 11, 217 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Claude, F. et al. Spectrum of collective excitations of a quantum fluid of polaritons. Phys. Rev. B 107, 174507 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wouters, M. & Carusotto, I. Absence of long-range coherence in the parametric emission of photonic wires. Phys. Rev. B 74, 245316 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Porras, D. & Tejedor, C. Linewidth of a polariton laser: theoretical analysis of self-interaction effects. Phys. Rev. B 67, 161310 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Amelio, I. & Carusotto, I. Bogoliubov theory of the laser linewidth and application to polariton condensates. Phys. Rev. A 105, 023527 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Alaeian, H., Giedke, G., Carusotto, I., Löw, R. & Pfau, T. Limit cycle phase and goldstone mode in driven dissipative systems. Phys. Rev. A 103, 013712 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ji, K., Gladilin, V. N. & Wouters, M. Temporal coherence of one-dimensional nonequilibrium quantum fluids. Phys. Rev. B 91, 045301 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fontaine, Q. et al. Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate. Nature 608, 687–691 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ferrier, A., Zamora, A., Dagvadorj, G. & Szymańska, M. H. Searching for the Kardar-Parisi-Zhang phase in microcavity polaritons. Phys. Rev. B 105, 205301 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Trypogeorgos, D. et al. Emerging supersolidity in photonic-crystal polariton condensates. Nature 639, 337–341 (2025).

    Article 

    Google Scholar
     

  • Nigro, D. et al. Supersolidity of polariton condensates in photonic crystal waveguides. Phys. Rev. Lett. 134, 056002 (2025).

    Article 

    Google Scholar
     

  • Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article 

    Google Scholar
     

  • Claude, F. et al. Observation of the diffusive Nambu-Goldstone mode of a non-equilibrium phase transition. Zenodo https://doi.org/10.5281/zenodo.15079205 (2025).