• Davies, C. S. et al. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 628, 540–544 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Girvin, S. M. & Yang, K. Modern Condensed Matter Physics (Cambridge University Press, 2019).

  • Masri, P. Surface and interface phonons and related topics. Surf. Sci. Rep. 9, 293–369 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain. Nature 629, 1021–1026 (2024).

  • Qiao, H. et al. Splitting phonons: building a platform for linear mechanical quantum computing. Science 380, 1030–1033 (2023).

  • Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, J. et al. Large effective magnetic fields from chiral phonons in rare-earth halides. Science 382, 698–702 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kambhampati, P. On the kinetics and thermodynamics of excitons at the surface of semiconductor nanocrystals: are there surface excitons? Chem. Phys. 446, 92–107 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mittleman, D. M. et al. Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. Phys. Rev. B 49, 14435–14447 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pham, P. V. et al. 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122, 6514–6613 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ratchford, D. C. et al. Controlling the infrared dielectric function through atomic-scale heterostructures. ACS Nano 13, 6730–6741 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paudel, T. R. & Lambrecht, W. R. L. Computational study of phonon modes in short-period AlN/GaN superlattices. Phys. Rev. B 80, 104202 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hoglund, E. R. et al. Emergent interface vibrational structure of oxide superlattices. Nature 601, 556–561 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domínguez, C. et al. Length scales of interfacial coupling between metal and insulator phases in oxides. Nat. Mater. 19, 1182–1187 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Middey, S. et al. Epitaxial strain modulated electronic properties of interface controlled nickelate superlattices. Phys. Rev. B 98, 045115 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J. & Pantelides, S. T. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tai, K., Lawrence, A., Harmer, M. P. & Dillon, S. J. Misorientation dependence of Al2O3 grain boundary thermal resistance. Appl. Phys. Lett. 102, 034101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, X., Liu, D. & Tománek, D. Shear instability in twisted bilayer graphene. Phys. Rev. B 98, 195432 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 110, 11256–11260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Susarla, S. et al. Hyperspectral imaging of exciton confinement within a moiré unit cell with a subnanometer electron probe. Science 378, 1235–1239 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliel, G. S. N. et al. Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorio, A. & Cançado, L. G. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 175-176, 3–12 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Engineering correlated insulators in bilayer graphene with a remote Coulomb superlattice. Nat. Mater. 23, 189–195 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moire superlattices. Science 380, 860–864 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated electronic phases in a WSe2/WS2 Moiré Superlattice. Phys. Rev. Lett. 127, 037402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Laussy, F. P., Kavokin, A. V. & Shelykh, I. A. Exciton-polariton mediated superconductivity. Phys. Rev. Lett. 104, 106402 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Eberhard, B. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys. 63, 171 (2000).

    Article 

    Google Scholar
     

  • Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szeftel, J. Surface phonon dispersion, using electron energy loss spectroscopy. Surf. Sci. 152-153, 797–810 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ripin, A. et al. Tunable phononic coupling in excitonic quantum emitters. Nat. Nanotechnol. 18, 1020–1026 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, R. C. Angular momentum on a lattice. Phys. Lett. B 114, 147–151 (1982).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yoon, Y. et al. Terahertz phonon engineering with van der Waals heterostructures. Nature 631, 771–776 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Strong electron–phonon coupling in magic-angle twisted bilayer graphene. Nature 636, 342–347 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Catalog of topological phonon materials. Science 384, eadf8458 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L., Boulanger, M. E., Wang, Z. C., Tafti, F. & Taillefer, L. Large phonon thermal Hall conductivity in the antiferromagnetic insulator Cu3TeO6. Proc. Natl. Acad. Sci. USA 119, e2208016119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thingstad, E., Kamra, A., Brataas, A. & Sudbø, A. Chiral phonon transport induced by topological magnons. Phys. Rev. Lett. 122, 107201 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pimenta Martins, L. G. et al. Pressure tuning of minibands in MoS2/WSe2 heterostructures revealed by moiré phonons. Nat. Nanotechnol. 18, 1147–1153 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui, C. H. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91, 165403 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Tuning commensurability in twisted van der Waals bilayers. Nature 625, 494–499 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, C., Naik, M. H., Chan, Y.-H. & Louie, S. G. Excitonic interactions and mechanism for ultrafast interlayer photoexcited response in van der waals heterostructures. Phys. Rev. Lett. 131, 236904 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature 610, 478–484 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loudon, R. J. The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Baek, J.-H. et al. Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers. Nat. Mater. 22, 1463–1469 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Dadgar, A. M. et al. Strain engineering and Raman Spectroscopy of monolayer transition metal dichalcogenides. Chem. Mater. 30, 5148–5155 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Naik, M. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 609, 52–57 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar