Davies, C. S. et al. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 628, 540–544 (2024).
Girvin, S. M. & Yang, K. Modern Condensed Matter Physics (Cambridge University Press, 2019).
Masri, P. Surface and interface phonons and related topics. Surf. Sci. Rep. 9, 293–369 (1988).
Yang, L. et al. Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain. Nature 629, 1021–1026 (2024).
Qiao, H. et al. Splitting phonons: building a platform for linear mechanical quantum computing. Science 380, 1030–1033 (2023).
Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).
Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).
Luo, J. et al. Large effective magnetic fields from chiral phonons in rare-earth halides. Science 382, 698–702 (2023).
Kambhampati, P. On the kinetics and thermodynamics of excitons at the surface of semiconductor nanocrystals: are there surface excitons? Chem. Phys. 446, 92–107 (2015).
Mittleman, D. M. et al. Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. Phys. Rev. B 49, 14435–14447 (1994).
Pham, P. V. et al. 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122, 6514–6613 (2022).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Ratchford, D. C. et al. Controlling the infrared dielectric function through atomic-scale heterostructures. ACS Nano 13, 6730–6741 (2019).
Paudel, T. R. & Lambrecht, W. R. L. Computational study of phonon modes in short-period AlN/GaN superlattices. Phys. Rev. B 80, 104202 (2009).
Hoglund, E. R. et al. Emergent interface vibrational structure of oxide superlattices. Nature 601, 556–561 (2022).
Domínguez, C. et al. Length scales of interfacial coupling between metal and insulator phases in oxides. Nat. Mater. 19, 1182–1187 (2020).
Middey, S. et al. Epitaxial strain modulated electronic properties of interface controlled nickelate superlattices. Phys. Rev. B 98, 045115 (2018).
Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).
He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J. & Pantelides, S. T. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).
Tai, K., Lawrence, A., Harmer, M. P. & Dillon, S. J. Misorientation dependence of Al2O3 grain boundary thermal resistance. Appl. Phys. Lett. 102, 034101 (2013).
Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).
Lin, X., Liu, D. & Tománek, D. Shear instability in twisted bilayer graphene. Phys. Rev. B 98, 195432 (2018).
Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 110, 11256–11260 (2013).
Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).
Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).
Susarla, S. et al. Hyperspectral imaging of exciton confinement within a moiré unit cell with a subnanometer electron probe. Science 378, 1235–1239 (2022).
Eliel, G. S. N. et al. Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).
Jorio, A. & Cançado, L. G. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 175-176, 3–12 (2013).
Zhang, Z. et al. Engineering correlated insulators in bilayer graphene with a remote Coulomb superlattice. Nat. Mater. 23, 189–195 (2024).
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).
Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).
Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).
Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moire superlattices. Science 380, 860–864 (2023).
Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated electronic phases in a WSe2/WS2 Moiré Superlattice. Phys. Rev. Lett. 127, 037402 (2021).
Li, T. et al. Quantum anomalous hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).
Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).
Laussy, F. P., Kavokin, A. V. & Shelykh, I. A. Exciton-polariton mediated superconductivity. Phys. Rev. Lett. 104, 106402 (2010).
Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).
Eberhard, B. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys. 63, 171 (2000).
Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).
Szeftel, J. Surface phonon dispersion, using electron energy loss spectroscopy. Surf. Sci. 152-153, 797–810 (1985).
Ripin, A. et al. Tunable phononic coupling in excitonic quantum emitters. Nat. Nanotechnol. 18, 1020–1026 (2023).
Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).
Johnson, R. C. Angular momentum on a lattice. Phys. Lett. B 114, 147–151 (1982).
Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).
Yoon, Y. et al. Terahertz phonon engineering with van der Waals heterostructures. Nature 631, 771–776 (2024).
Chen, C. et al. Strong electron–phonon coupling in magic-angle twisted bilayer graphene. Nature 636, 342–347 (2024).
Xu, Y. et al. Catalog of topological phonon materials. Science 384, eadf8458 (2024).
Chen, L., Boulanger, M. E., Wang, Z. C., Tafti, F. & Taillefer, L. Large phonon thermal Hall conductivity in the antiferromagnetic insulator Cu3TeO6. Proc. Natl. Acad. Sci. USA 119, e2208016119 (2022).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Thingstad, E., Kamra, A., Brataas, A. & Sudbø, A. Chiral phonon transport induced by topological magnons. Phys. Rev. Lett. 122, 107201 (2019).
Pimenta Martins, L. G. et al. Pressure tuning of minibands in MoS2/WSe2 heterostructures revealed by moiré phonons. Nat. Nanotechnol. 18, 1147–1153 (2023).
Lui, C. H. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91, 165403 (2015).
Li, Y. et al. Tuning commensurability in twisted van der Waals bilayers. Nature 625, 494–499 (2024).
Hu, C., Naik, M. H., Chan, Y.-H. & Louie, S. G. Excitonic interactions and mechanism for ultrafast interlayer photoexcited response in van der waals heterostructures. Phys. Rev. Lett. 131, 236904 (2023).
Sun, X. et al. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature 610, 478–484 (2022).
Loudon, R. J. The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964).
Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).
Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).
Baek, J.-H. et al. Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers. Nat. Mater. 22, 1463–1469 (2023).
van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).
Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).
Dadgar, A. M. et al. Strain engineering and Raman Spectroscopy of monolayer transition metal dichalcogenides. Chem. Mater. 30, 5148–5155 (2018).
Naik, M. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 609, 52–57 (2022).
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).