Flebus, B. et al. The 2024 magnonics roadmap. J. Phys. Condens. Matter 36, 363501 (2024).
Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).
Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).
Mahmoud, A. et al. Introduction to spin wave computing. J. Appl. Phys. 128, 161101 (2020).
Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).
Körber, L. et al. Pattern recognition in reciprocal space with a magnon-scattering reservoir. Nat. Commun. 14, 3954 (2023).
Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139–1144 (2024).
Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 0800172 (2022).
Girardi, D. et al. Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet. Nat. Commun. 15, 3057 (2024).
Wintz, S. et al. Magnetic vortex cores as tunable spin-wave emitters. Nat. Nanotechnol. 11, 948–953 (2016).
Yu, H. et al. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nat. Commun. 7, 11255 (2016).
Wang, H. et al. Reconfigurable nonreciprocal excitation of propagating exchange spin waves in perpendicularly magnetized yttrium iron garnet thin films. Phys. Rev. B 108, 134403 (2023).
Liu, C. et al. Long-distance propagation of short-wavelength spin waves. Nat. Commun. 9, 738 (2018).
Talapatra, A. et al. Imaging of short-wavelength spin waves in a nanometer-thick YIG/Co bilayer. Appl. Phys. Lett. 122, 202404 (2023).
Wang, Q. et al. Deeply nonlinear excitation of self-normalized short spin waves. Sci. Adv. 9, eadg4609 (2023).
Nikolaev, K., Mohapatra, B. D., Schmidt, G., Demokritov, S. & Demidov, V. Spatially extended nonlinear generation of short-wavelength spin waves in yttrium iron garnet nanowaveguides. Phys. Rev. Appl. 22, 044083 (2024).
Ginzburg, V. L. Radiation by uniformly moving sources (Vavilov-Cherenkov effect, transition radiation, and other phenomena). Phys. Usp. 39, 973–982 (1996).
Čerenkov, P. A. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937).
Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).
Datta, T. Cherenkov magnon excitations by a sub-relativistic magnetic monopole. Phys. Lett. A 103, 243–246 (1984).
Vorob’ev, P. V. & Kolokolov, I. V. Cherenkov emission of magnons by a slow monopole. JETP Lett. 67, 910 (1998).
Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, ncomms11880 (2016).
Pogue, B. W. et al. Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging. Nat. Biomed. Eng. 2, 254–264 (2018).
Yan, M., Kákay, A., Andreas, C. & Hertel, R. Spin-Cherenkov effect and magnonic Mach cones. Phys. Rev. B 88, 220412 (2013).
Khokhlov, N., Filatov, I. & Kalashnikova, A. Spatial asymmetry of optically excited spin waves in anisotropic ferromagnetic film. J. Magn. Magn. Mater. 589, 171514 (2024).
Satoh, T. et al. Directional control of spin-wave emission by spatially shaped light. Nat. Photon. 6, 662–666 (2012).
Dobrovolskiy, O. V. et al. Moving Abrikosov vortex lattices generate sub-40-nm magnons. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-02024-w (2025).
Yan, M. et al. Fast domain wall dynamics in magnetic nanotubes: suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett. 99, 122505 (2011).
Hertel, R. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J. Phys. Condens. Matter 28, 483002 (2016).
Kimel, A. V., Kalashnikova, A. M., Pogrebna, A. & Zvezdin, A. K. Fundamentals and perspectives of ultrafast photoferroic recording. Phys. Rep. 852, 1–46 (2020).
Matsuda, O., Larciprete, M. C., Voti, R. L. & Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).
Hioki, T., Hashimoto, Y. & Saitoh, E. Coherent oscillation between phonons and magnons. Commun. Phys. 5, 115 (2022).
Kitaeva, V. F., Zharikov, E. V. & Chistyi, I. L. The properties of crystals with garnet structure. Phys. Status Solidi A 92, 475–488 (1985).
Scherbakov, A. V. et al. Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses. Phys. Rev. Lett. 105, 117204 (2010).
Deb, M. et al. Femtosecond laser-excitation-driven high frequency standing spin waves in nanoscale dielectric thin films of iron garnets. Phys. Rev. Lett. 123, 027202 (2019).
Shelukhin, L. A. et al. Ultrafast laser-induced changes of the magnetic anisotropy in a low-symmetry iron garnet film. Phys. Rev. B 97, 014422 (2018).
Gurevich, A. & Melkov, G. Magnetization Oscillations and Waves (CRC Press, 1996).
Kats, V. N. et al. Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films. Phys. Rev. B 93, 214422 (2016).
Wojtowicz, P. J. High temperature susceptibility of garnets: exchange interactions in YIG and LuIG. J. Appl. Phys. 33, 1257–1258 (1962).
Zeuschner, S. P. et al. Standing spin wave excitation in Bi:YIG films via temperature-induced anisotropy changes and magneto-elastic coupling. Phys. Rev. B 106, 134401 (2022).
Azovtsev, A. V. & Pertsev, N. A. Antiferromagnetic standing spin waves generated in NiO thin films by short strain pulses. Phys. Rev. B 110, 144430 (2024).
Akyol, M. et al. Structural, magnetic and optical properties of Au/YIG, YIG/Au and Au/YIG/Au multilayer thin film stacks. J. Magn. Magn. Mater. 493, 165704 (2020).
Dongquoc, V. et al. Extraordinary enhancement of magneto-optical Faraday rotation angle in Bi-YIG/Pt/glass prepared by metal organic decomposition method. Surf. Interfaces 51, 104652 (2024).
Gerevenkov, P. I. et al. Three regimes of a picosecond magnetoacoustics in ferromagnetic structures. Preprint at https://arxiv.org/abs/2505.09579 (2025).
Zeuschner, S. P. et al. Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction. Struct. Dyn. 6, 024302 (2019).
Yaremkevich, D. D. et al. On-chip phonon-magnon reservoir for neuromorphic computing. Nat. Commun. 14, 8296 (2023).
Matsumoto, K. et al. Observation of evanescent spin waves in the magnetic dipole regime. Phys. Rev. B 101, 184407 (2020).
Philippe, G., Moalic, M. & Kłos, J. W. Unidirectional spin wave emission by traveling pair of magnetic field profiles. J. Magn. Magn. Mater. 587, 171359 (2023).
Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).
Liao, L., Liu, J., Puebla, J., Shao, Q. & Otani, Y. Hybrid magnon-phonon crystals. npj Spintron. 2, 47 (2024).
Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).
van Capel, P., Péronne, E. & Dijkhuis, J. Nonlinear ultrafast acoustics at the nano scale. Ultrasonics 56, 36–51 (2015).
Zhuang, S., Meisenheimer, P. B., Heron, J. & Hu, J.-M. A narrowband spintronic terahertz emitter based on magnetoelastic heterostructures. ACS Appl. Mater. Interfaces 13, 48997–49006 (2021).
Doormann, V., Krumme, J. P., Klages, C. P. & Erman, M. Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths. Appl. Phys. A 34, 223–230 (1984).
Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).
Clark, A. E., DeSavage, B., Coleman, W., Callen, E. R. & Callen, H. B. Saturation magnetostriction of single-crystal YIG. J. Appl. Phys. 34, 1296–1297 (1963).
Kamra, A., Keshtgar, H., Yan, P. & Bauer, G. E. W. Coherent elastic excitation of spin waves. Phys. Rev. B 91, 104409 (2015).
Azovtsev, A. V. & Pertsev, N. A. Magnetization dynamics and spin pumping induced by standing elastic waves. Phys. Rev. B 94, 184401 (2016).
Ruello, P. & Gusev, V. E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 56, 21–35 (2015).
Filatov, I. A. et al. Magnon-Cherenkov effect from a picosecond strain pulse. figshare https://doi.org/10.6084/m9.figshare.28351496 (2025).