• Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields (Butterworth Heinemann, 2010).

  • Leonhardt, U. & Philbin, G. T. Transformation optics and the geometry of light. Prog. Opt. 95, 69–152 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Chen, H., Chan, C. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).

  • Shaltout, M. A., Shalaev, M. V. & Brongersma, L. M. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

  • Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kadic, M., Milton, W. G., van Hecke, M. & Wegener, M. 3d metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Article 

    Google Scholar
     

  • Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  • Sheng, C., Liu, H., Wang, Y., Zhu, S. & Genov, D. Trapping light by mimicking gravitational lensing. Nat. Photonics 7, 902–906 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kildishev, V. A., Boltasseva, A. & Shalaev, M. V. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  • Batz, S. & Peschel, U. Linear and nonlinear optics in curved space. Phys. Rev. A 78, 043821 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Schultheiss, H. V. et al. Optics in curved space. Phys. Rev. Lett. 105, 143901 (2010).

  • Bekenstein, R. et al. Control of light by curved space in nanophotonic structures. Nat. Photonics 11, 664–670 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Narimanov, E. & Kildishev, A. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 41106 (2009).

  • Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the newton-schrödinger system. Nat. Phys. 11, 872–878 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Diósi, L. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199–202 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Moroz, I. M., Penrose, R. & Tod, P. Spherically-symmetric solutions of the schrödinger-newton equations. Class. Quantum Gravity 15, 2733–2742 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Carlip, S. Is quantum gravity necessary? Class. Quantum Gravity 25, 154010 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Tod, P. & Moroz, I. M. An analytical approach to the schrödinger-newton equations. Nonlinearity 12, 201–216 (1999).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Page, D. N. Classical and quantum decay of oscillations: Oscillating self-gravitating real scalar field solitons. Phys. Rev. D. 70, 023002 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Guzmãn, F. S. & Ureña-López, L. A. Evolution of the schrödinger-newton system for a self-gravitating scalar field. Phys. Rev. D 69, 124033 (2004).

  • Diósi, L. Notes on certain newton gravity mechanisms of wavefunction localization and decoherence. J. Phys. A: Math. Theor. 40, 2989–2995 (2007).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Giulini, D. & Großardt, A. Centre-of-mass motion in multi-particle schrödinger-newton dynamics. N. J. Phys. 16, 075005 (2014).

    Article 

    Google Scholar
     

  • Harrison, R., Moroz, I. & Tod, K. P. A numerical study of the schrodinger newton equations. Nonlinearity 16, 101–122 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kopp, M., Vattis, K. & Skordis, C. Solving the vlasov equation in two spatial dimensions with the schrödinger method. Phys. Rev. D 96, 123532 (2017).

  • Tilloy, A. Does gravity have to be quantized? lessons from non-relativistic toy models. J. Phys.: Conf. Ser. 1275, 12006 (2019).

  • Roger, T. et al. Optical analogues of the newton-schrödinger equation and boson star evolution. Nat. Commun. 7, 13492 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruffini, R. & Bonazzola, S. Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767–1783 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Will, M. C. On the unreasonable effectiveness of the post-newtonian approximation in gravitational physics. Proc. Natl. Acad. Sci. 108, 5938–5945 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa, L. & Natário, J. Frame-dragging: meaning, myths, and misconceptions. Universe 7, 388 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, Inc., 1972).

  • Rotschild, C., Cohen, O., Manela, O., Segev, M. & Carmon, T. Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons. Phys. Rev. Lett. 95, 213904 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rotschild, C., Alfassi, B., Cohen, O. & Segev, M. Long-range interactions between optical solitons. Nat. Phys. 2, 769–774 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Rotschild, C. et al. Two-dimensional multipole solitons in nonlocal nonlinear media. Opt. Lett. 31, 3312 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rotschild, C., Schwartz, T., Cohen, O. & Segev, M. Incoherent spatial solitons in effectively instantaneous nonlinear media. Nat. Photonics 2, 371–376 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dabby, F. & Whinnery, J. Thermal self-focusing of laser beams in lead glasses. Appl. Phys. Lett. 13, 284–286 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Quiroga-Teixeiro, M. & Michinel, H. Stable azimuthal stationary state in quintic nonlinear optical media. JOSA B 14, 2004–2009 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lawrence, B. L. et al. Measurement of the complex nonlinear refractive index of single crystal p-toluene sulfonate at 1064 nm. Appl. Phys. Lett. 64, 2773–2775 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mihalache, D. et al. Stable solitons of even and odd parities supported by competing nonlocal nonlinearities. Phys. Rev. E-“Stat. Nonlinear Soft Matter Phys. 74, 066614 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Esbensen, B., Bache, M., Bang, O. & Krolikowski, W. Anomalous interaction of nonlocal solitons in media with competing nonlinearities. Phys. Rev. A-“At. Mol. Optical Phys. 86, 033838 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jung, P. S., Karpierz, M., Trippenbach, M., Christodoulides, D. & Krolikowski, W. Supermode spatial solitons via competing nonlocal nonlinearities. Photonics Lett. Pol. 10, 33–35 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Brizuela, D. & Duran-Cabacés, A. Relativistic effects on the schrödinger-newton equation. Phys. Rev. D 106, 124038 (2022).

  • Schwartz, P. K. & Giulini, D. Post-newtonian corrections to schrödinger equations in gravitational fields. Class. Quantum Gravity 36, 095016 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giulini, D. & Großardt, A. The schrödinger-newton equation as a non-relativistic limit of self-gravitating klein-gordon and dirac fields. Class. Quantum Gravity 29, 215010 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Yang, J. & Lakoba, T. I. Accelerated imaginary-time evolution methods for the computation of solitary waves. Stud. Appl. Math. 120, 265–292 (2008).

    Article 
    MathSciNet 

    Google Scholar
     

  • Vocke, D. et al. Role of geometry in the superfluid flow of nonlocal photon fluids. Phys. Rev. A 94, 13849 (2016).

  • Agresti, J. Researches on non-standard optics for advanced gravitational waves interferometers. Preprint at https://arxiv.org/abs/0806.3065 (2008).

  • Tamburini, F., Thidé, B., Molina-Terriza, G. & Anzolin, G. Twisting of light around rotating black holes. Nat. Phys. 7, 195–197 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Malomed, A. B. Two-dimensional solitons in nonlocal media: a brief review. Symmetry 14 (2022).

  • Suter, D. & Blasberg, T. Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium. Phys. Rev. A 48, 4583–4587 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar