• Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Goldman, N. & Dalibard, J. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).


    Google Scholar
     

  • Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146 (2017).

    Article 

    Google Scholar
     

  • Rosen, I. T. et al. A synthetic magnetic vector potential in a 2D superconducting qubit array. Nat. Phys. 20, 1881–1887 (2024).

    Article 

    Google Scholar
     

  • Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, L., Lee, M. D. K., Aliyu, M. M. & Loh, H. Floquet-tailored Rydberg interactions. Nat. Commun. 14, 7128 (2023).

    Article 
    ADS 

    Google Scholar
     

  • McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38 (2020).

    Article 

    Google Scholar
     

  • Weitz, T. et al. Lightwave-driven electrons in a Floquet topological insulator. Preprint at https://arxiv.org/abs/2407.17917 (2024).

  • Aidelsburger, M., Nascimbéne, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. C. R. Phys. 19, 394 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).


    Google Scholar
     

  • Lazarides, A., Das, A. & Moessner, R. Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E 90, 012110 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ponte, P., Chandran, A., Papić, Z. & Abanin, D. A. Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Thanasilp, S., Tangpanitanon, J., Lemonde, M.-A., Dangniam, N. & Angelakis, D. G. Quantum supremacy and quantum phase transitions. Phys. Rev. B 103, 165132 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, Y.-G. et al. Efficiently extracting multi-point correlations of a Floquet thermalized system. Preprint at https://arxiv.org/abs/2210.08556 (2022).

  • Bilitewski, T. & Cooper, N. R. Population dynamics in a Floquet realization of the Harper-Hofstadter Hamiltonian. Phys. Rev. A 91, 063611 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bilitewski, T. & Cooper, N. R. Scattering theory for Floquet-Bloch states. Phys. Rev. A 91, 033601 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Tai, M. E. et al. Microscopy of the interacting Harper-Hofstadter model in the few-body limit. Nature 546, 519 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Léonard, J. et al. Realization of a fractional quantum Hall state with ultracold atoms. Nature 619, 495 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Realization of fractional quantum Hall state with interacting photons. Science 384, 579 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Hafezi, M., Sørensen, A. S., Demler, E. & Lukin, M. D. Fractional quantum Hall effect in optical lattices. Phys. Rev. A 76, 023613 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Palmer, R. N., Klein, A. & Jaksch, D. Optical lattice quantum Hall effect. Phys. Rev. A 78, 013609 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Möller, G. & Cooper, N. R. Composite fermion theory for bosonic quantum Hall states on lattices. Phys. Rev. Lett. 103, 105303 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Dhar, A. et al. Bose-Hubbard model in a strong effective magnetic field: emergence of a chiral Mott insulator ground state. Phys. Rev. A 85, 041602 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Piraud, M. et al. Vortex and Meissner phases of strongly interacting bosons on a two-leg ladder. Phys. Rev. B 91, 140406 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Greschner, S. et al. Spontaneous increase of magnetic flux and chiral-current reversal in bosonic ladders: swimming against the tide. Phys. Rev. Lett. 115, 190402 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Greschner, S. et al. Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field. Phys. Rev. A 94, 063628 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Di Dio, M., De Palo, S., Orignac, E., Citro, R. & Chiofalo, M.-L. Persisting Meissner state and incommensurate phases of hard-core boson ladders in a flux. Phys. Rev. B 92, 060506 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Citro, R., Giamarchi, T. & Orignac, E. Hall response in interacting bosonic and fermionic ladders. Phys. Rev. Lett. 134, 056501 (2025).

    Article 

    Google Scholar
     

  • Buser, M., Greschner, S., Schollwöck, U. & Giamarchi, T. Probing the Hall voltage in synthetic quantum systems. Phys. Rev. Lett. 126, 030501 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Buser, M., Schollwöck, U. & Grusdt, F. Snapshot-based characterization of particle currents and the Hall response in synthetic flux lattices. Phys. Rev. A 105, 033303 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Atala, M. et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys 10, 588 (2014).

    Article 

    Google Scholar
     

  • Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhou, T.-W. et al. Observation of universal Hall response in strongly interacting fermions. Science 381, 427 (2023).

    Article 
    ADS 

    Google Scholar
     

  • T.-W., Zhou et al. Measuring Hall voltage and Hall resistance in an atom-based quantum simulator. Preprint at https://arxiv.org/abs/2411.09744 (2024).

  • Liang, Q. et al. Chiral dynamics of ultracold atoms under a tunable SU(2) synthetic gauge field. Nat. Phys. 20, 1738 (2024).

    Article 

    Google Scholar
     

  • Chen, T. et al. Interaction-driven breakdown of Aharonov–Bohm caging in flat-band Rydberg lattices. Nat. Phys. 21, 221 (2025).

    Article 

    Google Scholar
     

  • Impertro, A. et al. Local readout and control of current and kinetic energy operators in optical lattices. Phys. Rev. Lett. 133, 063401 (2024).

    Article 

    Google Scholar
     

  • Hügel, D. & Paredes, B. Chiral ladders and the edges of quantum Hall insulators. Phys. Rev. A 89, 023619 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Impertro, A. et al. An unsupervised deep learning algorithm for single-site reconstruction in quantum gas microscopes. Commun. Phys. 6, 166 (2023).

    Article 

    Google Scholar
     

  • Wienand, J. F. et al. Emergence of fluctuating hydrodynamics in chaotic quantum systems. Nat. Phys. 20, 1732–1737 (2024).

    Article 

    Google Scholar
     

  • Aidelsburger, M. et al. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Harper, P. G. Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Orignac, E. & Giamarchi, T. Meissner effect in a bosonic ladder. Phys. Rev. B 64, 144515 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Petrescu, A. & Le Hur, K. Bosonic Mott insulator with Meissner currents. Phys. Rev. Lett. 111, 150601 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Keßler, S. & Marquardt, F. Single-site-resolved measurement of the current statistics in optical lattices. Phys. Rev. A 89, 061601 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sun, G. & Eckardt, A. Optimal frequency window for Floquet engineering in optical lattices. Phys. Rev. Res. 2, 013241 (2020).

    Article 

    Google Scholar
     

  • Crépin, F., Laflorencie, N., Roux, G. & Simon, P. Phase diagram of hard-core bosons on clean and disordered two-leg ladders: Mott insulator–Luttinger liquid–Bose glass. Phys. Rev. B 84, 054517 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Qiao, X., Zhang, X.-B., Jian, Y., Zhang, A.-X. & Xue, J.-K. Quench dynamics of two-leg ladders with magnetic flux. Phys. A Stat. 576, 126062 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Giri, M. K., Paul, B. & Mishra, T. Flux-enhanced localization and reentrant delocalization in the quench dynamics of two interacting bosons on a Bose-Hubbard ladder. Phys. Rev. A 109, 043308 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Jian, Y. et al. Defect induced nonequilibrium quantum dynamics in an interacting Bose–Hubbard flux ladder. New J. Phys. 25, 043025 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Citro, R., De Palo, S., Victorin, N., Minguzzi, A. & Orignac, E. Spectral function of a boson ladder in an artificial gauge field. Condens. Matter 5, 15 (2020).

    Article 

    Google Scholar
     

  • Huang, W. & Yao, Y. Spatial inversion symmetry breaking of vortex current in a biased-ladder superfluid. Phys. Rev. Res. 6, 013037 (2024).

    Article 

    Google Scholar
     

  • Wang, B., Dong, X.-Y., Ünal, F. N. & Eckardt, A. Robust and ultrafast state preparation by ramping artificial gauge potentials. New J. Phys. 23, 063017 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Schindler, P. M. & Bukov, M. Counterdiabatic driving for periodically driven systems. Phys. Rev. Lett. 133, 123402 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Viebahn, K. et al. Suppressing dissipation in a Floquet-Hubbard system. Phys. Rev. X 11, 011057 (2021).


    Google Scholar
     

  • Palm, F. A., Mardazad, S., Bohrdt, A., Schollwöck, U. & Grusdt, F. Snapshot-based detection of 𝜈 = 1/2 Laughlin states: coupled chains and central charge. Phys. Rev. B 106, L081108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, B., Dong, X. & Eckardt, A. Measurable signatures of bosonic fractional Chern insulator states and their fractional excitations in a quantum-gas microscope. SciPost Phys. 12, 095 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Palm, F. A., Repellin, C., Goldman, N. & Grusdt, F. Absence of gapless Majorana edge modes in few-leg bosonic flux ladders. Phys. Rev. Res. 7, L012001 (2025).

    Article 

    Google Scholar