Erwin, D. H. & Valentine, J. W. The Cambrian Explosion: The Construction of Animal Biodiversity (Roberts & Company, 2013).
Briggs, D. E. G. The Cambrian explosion. Curr. Biol. 25, R864–R868 (2015).
Conway Morris, S. Burgess Shale faunas and the Cambrian explosion. Science 246, 339–346 (1989).
Butterfield, N. J. Exceptional fossil preservation and the Cambrian explosion. Integr. Comp. Biol. 43, 166–177 (2003).
Gaines, R. R. Burgess Shale-type preservation and its distribution in space and time. Paleontol. Soc. Papers 20, 123–146 (2014).
Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).
Myrow, P. M. et al. Tectonic trigger to the first major extinction of the Phanerozoic: the early Cambrian Sinsk event. Sci. Adv. 10, eadl3452 (2024).
Murphy, A., Penny, A., Zhuravlev, A. Y. & Wood, R. A. Changes in metazoan functional diversity across the Cambrian Radiation and the first Phanerozoic mass extinction: the Cambrian Sinsk Event. Proc. R. Soc. B 292, 20250968 (2025).
Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 529, 115873 (2020).
Zhao, F. C. et al. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology 40, 50–69 (2014).
Fu, D. J. et al. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342 (2019).
Briggs, D. E. G., Collier, F. J. & Douglas, E. H. The Fossils of the Burgess Shale (Smithsonian Institution, 1994).
Zhuravlev, A. Y. & Wood, R. A. The two phases of the Cambrian Explosion. Sci. Rep. 8, 16656 (2018).
Wood, R. A. et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol. 3, 528–538 (2019).
Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006).
Rohde, R. A. & Muller, R. A. Cycles in fossil diversity. Nature 434, 209–210 (2003).
Gabbott, S. E., Zalasiewicz, J. & Collins, D. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. J. Geol. Soc. 165, 307–318 (2008).
Zhu, M. Y. et al. Cambrian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 25–60 (2019).
Peng, S. C., Babcock, L. E. & Ahlberg, P. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 565–629 (Elsevier, 2020).
Hu, S. X. et al. The Guanshan Biota (Yunnan Science Press, 2013).
Wang, D. Z. et al. First report of the Pingding locality of the Balang Lagerstätte (Cambrian Stage 4), South China: implications for community complexity and geographic variation. Glob. Planet. Change 245, 104641 (2025).
Gaines, R. R., García-Bellido, D. C., Jago, J. B., Myrow, P. M. & Paterson, J. R. The Emu Bay Shale: a unique early Cambrian Lagerstätte from a tectonically active basin. Sci. Adv. 10, eadp2650 (2024).
Ivantsov, A. Y. et al. Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 69–88 (2005).
Lieberman, B. S. A new soft-bodied fauna: the Pioche Formation of Nevada. J. Paleontol. 77, 674–690 (2003).
Pari, G., Briggs, D. E. G. & Gaines, R. R. The Parker Quarry Lagerstätte of Vermont—the first reported Burgess Shale-type fauna rediscovered. Geology 49, 693–697 (2021).
Butterfield, N. J. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16, 272–286 (1990).
Gaines, R. R., Briggs, D. E. G. & Zhao, Y. L. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36, 755–758 (2008).
Gabbott, S. E., Hou, X. G., Norry, M. J. & Siveter, D. J. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904 (2004).
Zhu, M. Y., Babcock, L. E. & Steiner, M. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 31–46 (2005).
Forchielli, A., Steiner, M., Kasbohm, J., Hu, S. X. & Keupp, H. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 398, 59–85 (2014).
Caron, J.-B. & Jackson, D. A. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 222–256 (2008).
Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G. & Streng, M. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nat. Commun. 5, 3210 (2014).
Yang, X. F. et al. A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments. Nat. Ecol. Evol. 5, 1082–1090 (2021).
Aria, C. & Caron, J.-B. Cephalic and limb anatomy of a new isoxyid from the Burgess Shale and the role of ‘stem bivalved arthropods’ in the disparity of the frontalmost appendage. PLoS ONE 10, e0124979 (2015).
Aria, C. & Caron, J.-B. A middle Cambrian arthropod with chelicerae and proto-book gills. Nature 573, 586–589 (2019).
Zhang, M. J. et al. Amplectobeluid radiodont Guanshancaris gen. nov. from the lower Cambrian (Stage 4) Guanshan Lagerstätte of South China: biostratigraphic and paleobiogeographic implications. Biology 12, 583 (2023).
Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).
Conway Morris, S. & Caron, J.-B. Halwaxiids and the early evolution of the lophotrochozoans. Science 315, 1255–1258 (2007).
Caron, J.-B., Conway Morris, S. & Shu, D. G. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE 5, e9586 (2010).
Maletz, J. The evolutionary origins of the Hemichordata (Enteropneusta & Pterobranchia)—a review based on fossil evidence and interpretations. Bull. Geosci. 99, 127–147 (2024).
Henschke, N., Everett, J. D., Richardson, A. J. & Suthers, I. M. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720–733 (2016).
Nanglu, K., Lerosey-Aubril, R., Weaver, J. C. & Ortega-Hernández, J. A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan. Nat. Commun. 14, 3832 (2023).
Na, L., Kocsis, ÁT., Li, Q. J. & Kiessling, W. Coupling of geographic range and provincialism in Cambrian marine invertebrates. Paleobiology 49, 284–295 (2023).
Na, L. & Kiessling, W. Diversity partitioning during the Cambrian radiation. Proc. Natl Acad. Sci. USA 112, 4702–4706 (2015).
Hendricks, J. R. & Lieberman, B. S. Biogeography and the Cambrian radiation of arachnomorph arthropods. Mem. Assoc. Australas. Palaeontol. 34, 461–471 (2007).
Holmes, J. D. & Budd, G. E. Reassessing a cryptic history of early trilobite evolution. Comm. Biol. 5, 1177 (2022).
He, T. C. et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nat. Geosci. 12, 468–474 (2019).
Jourdan, F. et al. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology 42, 543–546 (2014).
Bowyer, F. T., Wood, R. A. & Yilales, M. Sea level controls on Ediacaran–Cambrian animal radiations. Sci. Adv. 10, eado6462 (2024).
Hearing, T. W. et al. An early Cambrian greenhouse climate. Sci. Adv. 4, eaar5690 (2018).
Steiner, M., Zhu, M. Y., Zhao, Y. L. & Erdtmann, B.-D. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 129–152 (2005).
Wood, R. A. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).
Sepkoski, J. J. A model of onshore-offshore change in faunal diversity. Paleobiology 17, 58–77 (1991).
Zhuravlev, A. Y., Wood, R. A. & Bowyer, F. Cambrian radiation speciation events driven by sea level and redoxcline changes on the Siberian Craton. Sci. Adv. 9, eadh2558 (2023).
Zhu, M. Y. The origin and Cambrian explosion of animals: fossil evidences from China. Acta Palaeontol. Sinica 49, 269–287 (2010).
Scotese, C. R. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. Earthbyte https://www.earthbyte.org/paleomap-paleoatlas-for-gplates (2016).
Scotese, C. R. Global mean surface temperatures for 100 phanerozoic time intervals (scotese02a_v21321 (C1)). Zenodo https://doi.org/10.5281/zenodo.5718391 (2022).
Rasmussen, C. M. Ø, Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl Acad. Sci. USA 116, 7207–7213 (2019).
Zhu, M. Y., Babcock, L. E. & Peng, S. C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–222 (2006).
Kocsis, ÁT., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).
Kocsis, Á. T., Alroy, J., Reddin, C. J. & Kiessling, W. Phanerozoic-scale global marine biodiversity analysis with the R package divDyn v0.8. GitHub https://github.com/divDyn/ddPhanero/blob/master/doc/dd_phanero.pdf (2019).
Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).
Zhu, M. Y. et al. Lithostratigraphic subdivision and correlation of the Cambrian in China. J. Stratigr. 45, 223–249 (2021).
Yang, A. H., Zhu, M. Y., Zhang, J. M. & Li, G. X. Early Cambrian eodiscoid trilobites of the Yangtze Platform and their stratigraphic implications. Prog. Nat. Sci. 13, 861–866 (2003).
Kocsis, ÁT. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth Sci. Rev. 213, 103463 (2021).
Kocsis, Á. T. & Scotese, C. R. PaleoMAP PaleoCoastlines data (7.2). Zenodo https://doi.org/10.5281/zenodo.3903163 (2023).
Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).
Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).
Dornbos, S. Q. & Chen, J. Y. Community palaeoecology of the early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 200–212 (2008).
Nanglu, K., Caron, J. B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).
Oksanen, J. et al. vegan: community ecology package. R package version 2.6-8. https://CRAN.R-project.org/package=vegan (2024).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).
Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007).
Conway Morris, S. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology 29, 423–467 (1986).
Csardi, G. & Nepusz, T. The igraph software. Complex Syst. 1695, 1–9 (2006).
Zeng, H., Zhao, F. C. & Zhu, M. Y. Code and datasets for ‘A Cambrian soft-bodied biota after the first Phanerozoic mass extinction’. Science Data Bank https://cstr.cn/31253.11.sciencedb.32659 (2025).