• Erwin, D. H. & Valentine, J. W. The Cambrian Explosion: The Construction of Animal Biodiversity (Roberts & Company, 2013).

  • Briggs, D. E. G. The Cambrian explosion. Curr. Biol. 25, R864–R868 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conway Morris, S. Burgess Shale faunas and the Cambrian explosion. Science 246, 339–346 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Butterfield, N. J. Exceptional fossil preservation and the Cambrian explosion. Integr. Comp. Biol. 43, 166–177 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Gaines, R. R. Burgess Shale-type preservation and its distribution in space and time. Paleontol. Soc. Papers 20, 123–146 (2014).

    Article 

    Google Scholar
     

  • Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Myrow, P. M. et al. Tectonic trigger to the first major extinction of the Phanerozoic: the early Cambrian Sinsk event. Sci. Adv. 10, eadl3452 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, A., Penny, A., Zhuravlev, A. Y. & Wood, R. A. Changes in metazoan functional diversity across the Cambrian Radiation and the first Phanerozoic mass extinction: the Cambrian Sinsk Event. Proc. R. Soc. B 292, 20250968 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 529, 115873 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, F. C. et al. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology 40, 50–69 (2014).

    Article 

    Google Scholar
     

  • Fu, D. J. et al. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Briggs, D. E. G., Collier, F. J. & Douglas, E. H. The Fossils of the Burgess Shale (Smithsonian Institution, 1994).

  • Zhuravlev, A. Y. & Wood, R. A. The two phases of the Cambrian Explosion. Sci. Rep. 8, 16656 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, R. A. et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol. 3, 528–538 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rohde, R. A. & Muller, R. A. Cycles in fossil diversity. Nature 434, 209–210 (2003).


    Google Scholar
     

  • Gabbott, S. E., Zalasiewicz, J. & Collins, D. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. J. Geol. Soc. 165, 307–318 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, M. Y. et al. Cambrian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 25–60 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, S. C., Babcock, L. E. & Ahlberg, P. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 565–629 (Elsevier, 2020).

  • Hu, S. X. et al. The Guanshan Biota (Yunnan Science Press, 2013).

  • Wang, D. Z. et al. First report of the Pingding locality of the Balang Lagerstätte (Cambrian Stage 4), South China: implications for community complexity and geographic variation. Glob. Planet. Change 245, 104641 (2025).

    Article 

    Google Scholar
     

  • Gaines, R. R., García-Bellido, D. C., Jago, J. B., Myrow, P. M. & Paterson, J. R. The Emu Bay Shale: a unique early Cambrian Lagerstätte from a tectonically active basin. Sci. Adv. 10, eadp2650 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivantsov, A. Y. et al. Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 69–88 (2005).

    Article 

    Google Scholar
     

  • Lieberman, B. S. A new soft-bodied fauna: the Pioche Formation of Nevada. J. Paleontol. 77, 674–690 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Pari, G., Briggs, D. E. G. & Gaines, R. R. The Parker Quarry Lagerstätte of Vermont—the first reported Burgess Shale-type fauna rediscovered. Geology 49, 693–697 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Butterfield, N. J. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16, 272–286 (1990).

    Article 

    Google Scholar
     

  • Gaines, R. R., Briggs, D. E. G. & Zhao, Y. L. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36, 755–758 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gabbott, S. E., Hou, X. G., Norry, M. J. & Siveter, D. J. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, M. Y., Babcock, L. E. & Steiner, M. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 31–46 (2005).

    Article 

    Google Scholar
     

  • Forchielli, A., Steiner, M., Kasbohm, J., Hu, S. X. & Keupp, H. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 398, 59–85 (2014).

    Article 

    Google Scholar
     

  • Caron, J.-B. & Jackson, D. A. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 222–256 (2008).

    Article 

    Google Scholar
     

  • Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G. & Streng, M. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nat. Commun. 5, 3210 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, X. F. et al. A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments. Nat. Ecol. Evol. 5, 1082–1090 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Aria, C. & Caron, J.-B. Cephalic and limb anatomy of a new isoxyid from the Burgess Shale and the role of ‘stem bivalved arthropods’ in the disparity of the frontalmost appendage. PLoS ONE 10, e0124979 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aria, C. & Caron, J.-B. A middle Cambrian arthropod with chelicerae and proto-book gills. Nature 573, 586–589 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. J. et al. Amplectobeluid radiodont Guanshancaris gen. nov. from the lower Cambrian (Stage 4) Guanshan Lagerstätte of South China: biostratigraphic and paleobiogeographic implications. Biology 12, 583 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).

    Article 

    Google Scholar
     

  • Conway Morris, S. & Caron, J.-B. Halwaxiids and the early evolution of the lophotrochozoans. Science 315, 1255–1258 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Caron, J.-B., Conway Morris, S. & Shu, D. G. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE 5, e9586 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maletz, J. The evolutionary origins of the Hemichordata (Enteropneusta & Pterobranchia)—a review based on fossil evidence and interpretations. Bull. Geosci. 99, 127–147 (2024).

    Article 

    Google Scholar
     

  • Henschke, N., Everett, J. D., Richardson, A. J. & Suthers, I. M. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720–733 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nanglu, K., Lerosey-Aubril, R., Weaver, J. C. & Ortega-Hernández, J. A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan. Nat. Commun. 14, 3832 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na, L., Kocsis, ÁT., Li, Q. J. & Kiessling, W. Coupling of geographic range and provincialism in Cambrian marine invertebrates. Paleobiology 49, 284–295 (2023).

    Article 

    Google Scholar
     

  • Na, L. & Kiessling, W. Diversity partitioning during the Cambrian radiation. Proc. Natl Acad. Sci. USA 112, 4702–4706 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendricks, J. R. & Lieberman, B. S. Biogeography and the Cambrian radiation of arachnomorph arthropods. Mem. Assoc. Australas. Palaeontol. 34, 461–471 (2007).


    Google Scholar
     

  • Holmes, J. D. & Budd, G. E. Reassessing a cryptic history of early trilobite evolution. Comm. Biol. 5, 1177 (2022).

    Article 

    Google Scholar
     

  • He, T. C. et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nat. Geosci. 12, 468–474 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jourdan, F. et al. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology 42, 543–546 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bowyer, F. T., Wood, R. A. & Yilales, M. Sea level controls on Ediacaran–Cambrian animal radiations. Sci. Adv. 10, eado6462 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hearing, T. W. et al. An early Cambrian greenhouse climate. Sci. Adv. 4, eaar5690 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steiner, M., Zhu, M. Y., Zhao, Y. L. & Erdtmann, B.-D. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 129–152 (2005).

    Article 

    Google Scholar
     

  • Wood, R. A. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sepkoski, J. J. A model of onshore-offshore change in faunal diversity. Paleobiology 17, 58–77 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Zhuravlev, A. Y., Wood, R. A. & Bowyer, F. Cambrian radiation speciation events driven by sea level and redoxcline changes on the Siberian Craton. Sci. Adv. 9, eadh2558 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, M. Y. The origin and Cambrian explosion of animals: fossil evidences from China. Acta Palaeontol. Sinica 49, 269–287 (2010).


    Google Scholar
     

  • Scotese, C. R. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. Earthbyte https://www.earthbyte.org/paleomap-paleoatlas-for-gplates (2016).

  • Scotese, C. R. Global mean surface temperatures for 100 phanerozoic time intervals (scotese02a_v21321 (C1)). Zenodo https://doi.org/10.5281/zenodo.5718391 (2022).

  • Rasmussen, C. M. Ø, Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl Acad. Sci. USA 116, 7207–7213 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, M. Y., Babcock, L. E. & Peng, S. C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–222 (2006).

    Article 

    Google Scholar
     

  • Kocsis, ÁT., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).

    Article 

    Google Scholar
     

  • Kocsis, Á. T., Alroy, J., Reddin, C. J. & Kiessling, W. Phanerozoic-scale global marine biodiversity analysis with the R package divDyn v0.8. GitHub https://github.com/divDyn/ddPhanero/blob/master/doc/dd_phanero.pdf (2019).

  • Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, M. Y. et al. Lithostratigraphic subdivision and correlation of the Cambrian in China. J. Stratigr. 45, 223–249 (2021).


    Google Scholar
     

  • Yang, A. H., Zhu, M. Y., Zhang, J. M. & Li, G. X. Early Cambrian eodiscoid trilobites of the Yangtze Platform and their stratigraphic implications. Prog. Nat. Sci. 13, 861–866 (2003).

    Article 

    Google Scholar
     

  • Kocsis, ÁT. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth Sci. Rev. 213, 103463 (2021).

    Article 

    Google Scholar
     

  • Kocsis, Á. T. & Scotese, C. R. PaleoMAP PaleoCoastlines data (7.2). Zenodo https://doi.org/10.5281/zenodo.3903163 (2023).

  • Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dornbos, S. Q. & Chen, J. Y. Community palaeoecology of the early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 200–212 (2008).

    Article 

    Google Scholar
     

  • Nanglu, K., Caron, J. B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).

    Article 

    Google Scholar
     

  • Oksanen, J. et al. vegan: community ecology package. R package version 2.6-8. https://CRAN.R-project.org/package=vegan (2024).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  • Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007).

    Article 

    Google Scholar
     

  • Conway Morris, S. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology 29, 423–467 (1986).


    Google Scholar
     

  • Csardi, G. & Nepusz, T. The igraph software. Complex Syst. 1695, 1–9 (2006).


    Google Scholar
     

  • Zeng, H., Zhao, F. C. & Zhu, M. Y. Code and datasets for ‘A Cambrian soft-bodied biota after the first Phanerozoic mass extinction’. Science Data Bank https://cstr.cn/31253.11.sciencedb.32659 (2025).