Desurvire, E. Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).
Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Kawasaki, A. et al. Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing. Nat. Photon. 19, 271–276 (2025).
Mears, R., Reekie, L., Jauncey, I. & Payne, D. Low-noise erbium-doped fibre amplifier operating at 1.54um. Electron. Lett. 23, 1026–1028 (1987).
Sobhanan, A. et al. Semiconductor optical amplifiers: recent advances and applications. Adv. Opt. Photon. 14, 571–651 (2022).
Baumgartner, R. & Byer, R. Optical parametric amplification. IEEE J. Quantum Electron. 15, 432–444 (1979).
Jankowski, M., Mishra, J. & Fejer, M. M. Dispersion-engineered χ(2) nanophotonics: a flexible tool for nonclassical light. J. Phys. Photon. 3, 042005 (2021).
Ho, M.-C., Uesaka, K., Marhic, M., Akasaka, Y. & Kazovsky, L. 200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain. J. Lightwave Technol. 19, 977–981 (2001).
Kobayashi, T. et al. 103-ch. 132-Gbaud PS-QAM signal inline-amplified transmission with 14.1-THz bandwidth lumped PPLN-based OPAs over 400-km G.652.D SMF. In Proc. Optical Fiber Communication Conference (OFC) 2023 Th4B.6 (Optica Publishing, 2023).
Shimizu, S. et al. Wideband optical parametric amplification of 8.375-THz WDM signal using cascaded PPLN waveguides with reused pump light. J. Lightwave Technol. 41, 7399–7407 (2023).
Shimizu, S. et al. Hybrid lumped repeater using PPLN-based high-gain optical parametric phase conjugators and EDFAs for C+L-band transmission. J. Lightwave Technol. 42, 3580–3591 (2024).
Kuznetsov, N. et al. An ultra-broadband photonic-chip-based parametric amplifier. Nature 639, 928–934 (2025).
Yariv, A., Fekete, D. & Pepper, D. M. Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4, 52–54 (1979).
Umeki, T. et al. Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation. Opt. Express 24, 16945–16951 (2016).
Foo, B., Karlsson, M., Vijayan, K., Mazur, M. & Andrekson, P. A. Analysis of nonlinearity mitigation using phase-sensitive optical parametric amplifiers. Opt. Express 27, 31926–31941 (2019).
Kazama, T. et al. Over-30-dB gain and 1-dB noise figure phase-sensitive amplification using a pump-combiner-integrated fiber I/O PPLN module. Opt. Express 29, 28824–28834 (2021).
Ye, Z. et al. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv. 7, eabi8150 (2021).
Wu, L.-A., Kimble, H. J., Hall, J. L. & Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986).
Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).
Stokowski, H. S. et al. Integrated quantum optical phase sensor in thin film lithium niobate. Nat. Commun. 14, 3355 (2023).
Butt, M., Janaszek, B. & Piramidowicz, R. Lighting the way forward: the bright future of photonic integrated circuits. Sens. Int. 6, 100326 (2025).
Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).
Liu, X., Osgood, R. M., Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photon. 4, 557–560 (2010).
Kuyken, B. et al. 50 db parametric on-chip gain in silicon photonic wires. Opt. Lett. 36, 4401–4403 (2011).
Wang, K.-Y. & Foster, A. C. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt. Lett. 37, 1331–1333 (2012).
Ooi, K. J. A. et al. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 8, 13878 (2017).
Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).
Ayan, A., Liu, J., Kippenberg, T. J. & Brès, C.-S. Towards efficient broadband parametric conversion in ultra-long Si3N4 waveguides. Opt. Express 31, 40916–40927 (2023).
Qu, Y. et al. Integrated optical parametric amplifiers in silicon nitride waveguides incorporated with 2D graphene oxide films. Light Adv. Manuf. 4, 437 (2023).
Zhao, P. et al. Ultra-broadband optical amplification using nonlinear integrated waveguides. Nature 640, 918–923 (2025).
Sohler, W. & Suche, H. Optical parametric amplification in Ti-diffused LiNbO3 waveguides. Appl. Phys. Lett. 37, 255–257 (1980).
Serkland, D. K., Fejer, M. M., Byer, R. L. & Yamamoto, Y. Squeezing in a quasi-phase-matched LiNbO3 waveguide. Opt. Lett. 20, 1649–1651 (1995).
Umeki, T., Tadanaga, O., Takada, A. & Asobe, M. Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides. Opt. Express 19, 6326–6332 (2011).
Kashiwazaki, T. et al. Fabrication of low-loss quasi-single-mode PPLN waveguide and its application to a modularized broadband high-level squeezer. Appl. Phys. Letters 119, 251104 (2021).
Jankowski, M. et al. Quasi-static optical parametric amplification. Optica 9, 273–279 (2022).
Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303–308 (2022).
Li, X. et al. Two-stage lithium niobate nonlinear photonic circuits for low-crosstalk and broadband all optical wavelength conversion. APL Photon. 10, 076121 (2025).
Chen, M. et al. High-gain optical parametric amplification with a continuous-wave pump using a domain-engineered thin-film lithium niobate waveguide. Optica 12, 1242–1249 (2025).
Santandrea, M., Stefszky, M. & Silberhorn, C. General framework for the analysis of imperfections in nonlinear systems. Opt. Lett. 44, 5398–5401 (2019).
Zhao, J. et al. Unveiling the origins of quasi-phase matching spectral imperfections in thin-film lithium niobate frequency doublers. APL Photon. 8, 126106 (2023).
Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).
Khalatpour, A., Qi, L., Fejer, M. M. & Safavi-Naeini, A. Roughness-limited performance in ultra-low-loss lithium niobate cavities. Adv. Optical Mater. https://doi.org/10.1002/adom.202502355 (2025).
Kashiwazaki, T. et al. Over-8-dB squeezed light generation by a broadband waveguide optical parametric amplifier toward fault-tolerant ultra-fast quantum computers. Appl. Phys. Lett. 122, 234003 (2023).
McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun. 13, 4532 (2022).
Zhao, Y. et al. Large regenerative parametric amplification on chip at ultra-low pump powers. Optica 10, 819–825 (2023).
Menotti, M. et al. Nonlinear coupling of linearly uncoupled resonators. Phys. Rev. Lett. 122, 013904 (2019).
Wang, Z.-Y. et al. Toward ultimate-efficiency frequency conversion in nonlinear optical microresonators. Sci. Adv. 11, eadu7605 (2025).
Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).
Hu, C. et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express 29, 5397–5406 (2021).
Baney, D. M., Gallion, P. & Tucker, R. S. Theory and measurement techniques for the noise figure of optical amplifiers. Opt. Fiber Technol. 6, 122–154 (2000).
Cestier, I. et al. Chip-scale parametric amplifier with 11dB gain at 1550nm based on a slow-light GaInP photonic crystal waveguide. Opt. Lett. 37, 3996–3998 (2012).
Kishimoto, T., Inafune, K., Ogawa, Y., Sasaki, H. & Murai, H. Highly efficient phase-sensitive parametric gain in periodically poled LiNbO3 ridge waveguide. Opt. Lett. 41, 1905–1908 (2016).
Lamont, M. R. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008).
Sua, Y. M., Chen, J.-Y. & Huang, Y.-P. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched ppln waveguide. Opt. Lett. 43, 2965–2968 (2018).
Guo, X., Zou, C.-L. & Tang, H. X. 70 dB long-pass filter on a nanophotonic chip. Opt. Express 24, 21167–21176 (2016).
Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).
Siegman, A. E. Lasers (University Science Books, 1986).
Levine, J. A simplified calculation of power-broadened linewidths, with application to resonance ionization mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 69, 61–66 (2012).
Chen, P.-K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol. 19, 44–50 (2024).
Xin, C. J. et al. Wavelength-accurate and wafer-scale process for nonlinear frequency mixers in thin-film lithium niobate. Commun. Phys. 8, 136 (2025).