• Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996); https://doi.org/10.1109/SFCS.1996.548464

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fowler, A. G., Stephens, A. M. & Groszkowski, P. High-threshold universal quantum computation on the surface code. Phys. Rev. A 80, 052312 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Raussendorf, R., Harrington, J. & Goyal, K. Topological fault-tolerance in cluster state quantum computation. N. J. Phys. 9, 199 (2007).

    Article 
    MathSciNet 

    Google Scholar
     

  • Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett. 129, 030501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article 

    Google Scholar
     

  • Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).


    Google Scholar
     

  • Ryan-Anderson, C. et al. High-fidelity teleportation of a logical qubit using transversal gates and lattice surgery. Science 385, 1327–1331 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Lacroix, N. et al. Scaling and logic in the colour code on a superconducting quantum processor. Nature 645, 614–619 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Acharya, R. et al. Quantum error correction below the surface code threshold. Nature https://doi.org/10.1038/s41586-024-08449-y (2024).

  • Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675–680 (2022).

    Article 

    Google Scholar
     

  • Horsman, C., Fowler, A. G., Devitt, S. & Meter, R. V. Surface code quantum computing by lattice surgery. N. J. Phys. 14, 123011 (2012).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bombin, H. & Martin-Delgado, M. A. Quantum measurements and gates by code deformation. J. Phys. A 42, 095302 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Landahl, A. J. & Ryan-Anderson, C. Quantum computing by color-code lattice surgery. Preprint at https://arxiv.org/abs/1407.5103 (2014).

  • Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).

    Article 

    Google Scholar
     

  • Erhard, A. et al. Entangling logical qubits with lattice surgery. Nature 589, 220–224 (2021).

    Article 

    Google Scholar
     

  • Hetényi, B. & Wootton, J. R. Creating entangled logical qubits in the heavy-hex lattice with topological codes. PRX Quant. https://doi.org/10.1103/PRXQuantum.5.040334 (2024).

  • Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Høyer, P. & Špalek, R. Quantum fan-out is powerful. Theory Comput. 1, 81–103 (2004).

    Article 
    MathSciNet 

    Google Scholar
     

  • Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gehér, G. P., Jastrzebski, M., Campbell, E. T. & Crawford, O. To reset, or not to reset—that is the question. npj Quantum Inf. 11, 39 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Tomita, Y. & Svore, K. M. Low-distance surface codes under realistic quantum noise. Phys. Rev. A 90, 062320 (2014).

    Article 
    ADS 

    Google Scholar
     

  • O’Brien, T. E., Tarasinski, B. & DiCarlo, L. Density-matrix simulation of small surface codes under current and projected experimental noise. npj Quantum Inf. 3, 39 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Edmonds, J. Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).

    Article 
    MathSciNet 

    Google Scholar
     

  • Spitz, S. T., Tarasinski, B., Beenakker, C. W. J. & O’Brien, T. E. Adaptive weight estimator for quantum error correction in a time-dependent environment. Adv. Quant. Technol. 1, 1800012 (2018).

    Article 

    Google Scholar
     

  • Remm, A. et al. Experimentally informed decoding of stabilizer codes based on syndrome correlations. Phys. Rev. Research 8, 013044 (2026).

    Article 

    Google Scholar
     

  • Liang, Y.-C. et al. Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82, 076001 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Lao, L. & Criger, B. Magic state injection on the rotated surface code. In Proc. 19th ACM International Conference on Computing Frontiers 113–120 (ACM, 2022); https://doi.org/10.1145/3528416.3530237

  • Ye, Y. et al. Logical magic state preparation with fidelity beyond the distillation threshold on a superconducting quantum processor. Phys. Rev. Lett. 131, 210603 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gupta, R. S. et al. Encoding a magic state with beyond break-even fidelity. Nature 625, 259–263 (2024).

    Article 

    Google Scholar
     

  • Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Motzoi, F., Gambetta, J. M., Rebentrost, P. & Wilhelm, F. K. Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009).

  • Lazăr, S. et al. Calibration of drive nonlinearity for arbitrary-angle single-qubit gates using error amplification. Phys. Rev. Appl. 20, 024036 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gambetta, J. et al. Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement. Phys. Rev. A 76, 012325 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Swiadek, F. et al. Enhancing dispersive readout of superconducting qubits through dynamic control of the dispersive shift: experiment and theory. PRX Quant. 5, 040326 (2024).

    Article 
    ADS 

    Google Scholar
     

  • McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lacroix, N. et al. Fast flux-activated leakage reduction for superconducting quantum circuits. Phys. Rev. Lett. 134, 120601 (2025).

    Article 
    ADS 

    Google Scholar
     

  • DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    Article 

    Google Scholar
     

  • Rol, M. A. et al. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor. Appl. Phys. Lett. 116, 054001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rol, M. A. et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Phys. Rev. Lett. 123, 120502 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Negirneac, V. et al. High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys. Rev. Lett. 126, 220502 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lisenfeld, J. et al. Observation of directly interacting coherent two-level systems in an amorphous material. Nat. Commun. 6, 6182 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Krinner, S. et al. Benchmarking coherent errors in controlled-phase gates due to spectator qubits. Phys. Rev. Appl. 14, 024042 (2020).

    Article 
    ADS 

    Google Scholar