Margulies, L., Winther, G. & Poulsen, H. In situ measurement of grain rotation during deformation of polycrystals. Science 291, 2392–2394 (2001).
Peng, X., et al. Comparison of simulated and measured grain volume changes during grain growth. Phys. Rev. Mater. 6, 033402 (2022).
Bhattacharya, A. et al. Grain boundary velocity and curvature are not correlated in Ni polycrystals. Science 374, 189–193 (2021).
Offerman, S. et al. Grain nucleation and growth during phase transformations. Science 298, 1003–1005 (2002).
Lauridsen, E. M., Poulsen, H. F., Nielsen, S. F. & Juul Jensen, D. Recrystallization kinetics of individual bulk grains in 90% cold-rolled aluminium. Acta Materialia 51, 4423–4435 (2003).
Roumina, R., et al. The dynamics of recrystallized grains during static recrystallization in a hot-compressed Mg-3.2Zn-0.1Ca wt.% alloy using in-situ far field high-energy diffraction microscopy. Acta Materialia 234, 118039 (2022).
Gordon, J. V., et al. Evaluating the grain-scale deformation behavior of a single-phase FCC high entropy alloy using synchrotron high energy diffraction microscopy. Acta Materialia 215, 118039 (2021).
Schuren, J. C. et al. New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19, 235–244 (2015).
Abdolvand, H. et al. On the deformation twinning of Mg AZ31B: A three-dimensional synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int. J. Plasticity 70, 77–97 (2015).
Pokharel, R. et al. In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu. Int. J. Plasticity 67, 217–234 (2015).
Pagan, D. C. et al. Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements. Acta Materialia 128, 406–417 (2017).
Pagan, D. C., Nygren, K. E. & Miller, M. P. Analysis of a three-dimensional slip field in a hexagonal Ti alloy from in-situ high-energy X-ray diffraction microscopy data. Acta Materialia 221, 117372 (2021).
Sedmák, P. et al. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science 353, 559–562 (2016).
Bucsek, A. N. et al. Ferroelastic twin reorientation mechanisms in shape memory alloys elucidated with 3D X-ray microscopy. J. Mech. Phys. Solids 124, 897–928 (2019).
Wang, L. et al. Mechanical twinning and detwinning in pure Ti during loading and unloading – an in situ high-energy X-ray diffraction microscopy study. Scr. Materialia 92, 35–38 (2014).
Bucsek, A. N. et al. Three-dimensional in situ characterization of phase transformation induced austenite grain refinement in nickel-titanium. Scr. Materialia 162, 361–366 (2019).
Li, W. et al. 3D in-situ characterization of dislocation density in nickel-titanium shape memory alloys using high-energy diffraction microscopy. Acta Materialia 266, 119659 (2024).
Worsnop, F. F. et al. The influence of alloying on slip intermittency and the implications for dwell fatigue in titanium. Nat. Commun. 13, 5949 (2022).
Lim, R. E., Pagan, D. C., Bernier, J. V., Shade, P. A. & Rollett, A. D. Grain reorientation and stress-state evolution during cyclic loading of an α -Ti alloy below the elastic limit. Int. J. Fatigue 156, 106614 (2022).
Naragani, D. P., Shade, P. A., Kenesei, P., Sharma, H. & Sangid, M. D. X-ray characterization of the micromechanical response ahead of a propagating small fatigue crack in a Ni-based superalloy. Acta Materialia 179, 342–359 (2019).
Spear, A. D., Li, S. F., Lind, J. F., Suter, R. M. & Ingraffea, A. R. Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy. Acta Materialia 76, 413–424 (2014).
Maloth, T. et al. Multiscale modeling of cruciform dwell tests with the uncertainty-quantified parametrically homogenized constitutive model. Acta Materialia 200, 893–907 (2020).
Hanson, J. P. et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725. Nat. Commun. 9, 3386 (2018).
Rovinelli, A., Sangid, M. D., Proudhon, H. & Ludwig, W. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. npj Computational Mater. 4, 35 (2018).
Gustafson, S. et al. Quantifying microscale drivers for fatigue failure via coupled synchrotron X-ray characterization and simulations. Nat. Commun. 11, 3189 (2020).
Naragani, D. et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy. Acta Materialia 137, 71–84 (2017).
Poulsen, H. F., Margulies, L., Schmidt, S. & Winther, G. Lattice rotations of individual bulk grains. Acta Materialia 51, 3821–3830 (2003).
Suter, R. M., Hennessy, D., Xiao, C. & Lienert, U. Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: single-crystal verification. Rev. Sci. Instrum. 77, 123905 (2006).
Lim, R. E. et al. Grain-resolved temperature-dependent anisotropy in hexagonal Ti-7Al revealed by synchrotron X-ray diffraction. Mater. Charact. 174, 110943 (2021).
Zhang, X. et al. High-energy x-ray diffraction microscopy study of deformation microstructures in neutron-irradiated polycrystalline Fe-9%Cr. J. Nucl. Mater. 508, 556–566 (2018).
Sparks, G. et al. 3D Reconstruction of a High-Energy Diffraction Microscopy Sample Using Multi-modal Serial Sectioning with High-Precision EBSD and Surface Profilometry. Integr. Mater. Manuf. Innov. 13, 773–803 (2024).
Web of Science. 2004-2023 Times Cited, Journal Citation Reports (Clarivate, 2024).
Li, W. et al. Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy. J. Mater. Res. 38, 165–178 (2023).
Hayashi, Y., Setoyama, D., Hirose, Y., Yoshida, T. & Kimura, H. Intragranular three-dimensional stress tensor fields in plastically deformed polycrystals. Science 366, 1492–1496 (2019).
Henningsson, N. A., Hall, S. A., Wright, J. P. & Hektor, J. Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data. J. Appl. Crystallogr. 53, 314–325 (2020).
Park, J. -S. et al. Far-field high-energy diffraction microscopy: a non-destructive tool for characterizing the microstructure and micromechanical state of polycrystalline materials. Micros. Today 25, 36–45 (2017).
Quey, R., Dawson, P. R. & Barbe, F. Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Computer Methods Appl. Mech. Eng. 200, 1729–1745 (2011).
Park, J. -S. et al. High-energy synchrotron x-ray techniques for studying irradiated materials. J. Mater. Res. 30, 1380–1391 (2015).
Joel B. et al. HEXRD/hexrd: Release 0.9.3. Zenodo https://doi.org/10.5281/ZENODO.8033940 (2023).
Wright, J. FABLE-3DXRD/ImageD11. https://github.com/FABLE-3DXRD/ImageD11.
Wang, L. et al. Evaluating the Taylor hardening model in polycrystalline Ti using high energy X-ray diffraction microscopy. Scr. Materialia 195, 113743 (2021).
Pagan, D. C. & Miller, M. P. Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures. Acta Materialia 116, 200–211 (2016).
Nygren, K. E., Pagan, D. C., Bernier, J. V. & Miller, M. P. An algorithm for resolving intragranular orientation fields using coupled far-field and near-field high energy X-ray diffraction microscopy. Mater. Charact. 165, 110366 (2020).
Greeley, D. A., Adams, J. F., Kenesei, P., Spear, A. D. & Allison, J. E. Quantitative analysis of three-dimensional fatigue crack path selection in Mg alloy WE43 using high-energy X-ray diffraction microscopy. Fatigue Fract. Eng. Mat. Struct. 47, 1150–1171 (2024).
Bucsek, A. N., Dale, D., Ko, J. Y. P., Chumlyakov, Y. & Stebner, A. P. Measuring stress-induced martensite microstructures using far-field high-energy diffraction microscopy. Acta Crystallogr A Found. Adv. 74, 425–446 (2018).
Thibault, P. & Elser, V. X-ray diffraction microscopy. Annu. Rev. Condens. Matter Phys. 1, 237–255 (2010).
Lee, M. et al. X-Ray Diffraction for Materials Research: From Fundamentals to Applications. (Apple Academic Press, Oakville, ON, Canada; Waretown, NJ, USA, 2016).
Warren, B. E. et al. X-Ray Diffraction. (Dover Publications, New York, 1990).
King, A., Johnson, G., Engelberg, D., Ludwig, W. & Marrow, J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321, 382–385 (2008).
Ludwig, W., Schmidt, S., Lauridsen, E. M. & Poulsen, H. F. X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. direct beam case. J. Appl Crystallogr 41, 302–309 (2008).
Reischig, P. et al. Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials. J. Appl Crystallogr 46, 297–311 (2013).
McDonald, S. A. et al. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci. Rep. 5, (2015). 14665.
Bachmann, F., Bale, H., Gueninchault, N., Holzner, C. & Lauridsen, E. M. 3D grain reconstruction from laboratory diffraction contrast tomography. J. Appl Crystallogr 52, 643–651 (2019).
McDonald, S. A. et al. Tracking polycrystal evolution non-destructively in 3D by laboratory X-ray diffraction contrast tomography. Mater. Charact. 172, 110814 (2021).
Zhao, Y., Niverty, S., Ma, X. & Chawla, N. Correlation between corrosion behavior and grain boundary characteristics of a 6061 Al alloy by lab-scale X-ray diffraction contrast tomography (DCT). Mater. Charact. 193, 112325 (2022).
Sirdesai, N. N., Singh, T. N. & Pathegama Gamage, R. Thermal alterations in the poro-mechanical characteristic of an Indian sandstone – a comparative study. Eng. Geol. 226, 208–220 (2017).
Li, T., Senesi, A. J. & Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 116, 11128–11180 (2016).
Koch, M. H. J. SAXS Instrumentation for Synchrotron Radiation then and now. J. Phys.: Conf. Ser. 247, 012001 (2010).
Ilavsky, J. et al. Ultra-small-angle X-ray scattering at the Advanced Photon Source. J. Appl Crystallogr 42, 469–479 (2009).
Hexemer, A. & Müller-Buschbaum, P. Advanced grazing-incidence techniques for modern soft-matter materials analysis. IUCrJ 2, 106–125 (2015).
Gräwert, T. W. & Svergun, D. I. Structural Modeling Using Solution Small-Angle X-ray Scattering (SAXS). J. Mol. Biol. 432, 3078–3092 (2020).
Xiong, B., Chen, R., Zeng, F., Kang, J. & Men, Y. Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: In-situ ultra-small angle X-ray scattering study. J. Membr. Sci. 545, 213–220 (2018).
Kikhney, A. G. & Svergun, D. I. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 589, 2570–2577 (2015).
Bolze, J. & Gateshki, M. Highly versatile laboratory X-ray scattering instrument enabling (nano-)material structure analysis on multiple length scales by covering a scattering vector range of almost five decades. Rev. Sci. Instrum. 90, 123103 (2019).
Bernier, J. V., Suter, R. M., Rollett, A. D. & Almer, J. D. High-Energy X-Ray Diffraction Microscopy in Materials Science. Annu. Rev. Mater. Res. 50, 395–436 (2020).
Ganju, E., Nieto-Valeiras, E., LLorca, J. & Chawla, N. A novel diffraction contrast tomography (DCT) acquisition strategy for capturing the 3D crystallographic structure of pure titanium. Tomogr. Mater. Struct. 1, 100003 (2023).
Greeley, D. A. et al. Quantitative three-dimensional investigation of cyclic deformation mechanisms in Mg Alloys. https://doi.org/10.7302/8163 (2023).
Fang, H., Ludwig, W. & Lhuissier, P. Reconstruction algorithms for grain mapping by laboratory X-ray diffraction contrast tomography. J. Appl Crystallogr 55, 1652–1663 (2022).
Chen, Z. P. et al. Enhancing the signal-to-noise ratio of x-ray diffraction profiles by smoothed principal component analysis. Anal. Chem. 77, 6563–6570 (2005).
Martin, A. V. et al. Noise-robust coherent diffractive imaging with a single diffraction pattern. Opt. Express 20, 16650 (2012).
Larsson, D. H., Takman, P. A. C., Lundström, U., Burvall, A. & Hertz, H. M. A 24 keV liquid-metal-jet x-ray source for biomedical applications. Rev. Sci. Instrum. 82, 123701 (2011).
Lechowski, B. et al. Laboratory X-ray Microscopy of 3D Nanostructures in the Hard X-ray Regime Enabled by a Combination of Multilayer X-ray Optics. Nanomaterials 14, 233 (2024).
Moy, J.-P. Large area X-ray detectors based on amorphous silicon technology. Thin Solid Films 337, 213–221 (1999).
Kuttig, J. D. et al. Comparative investigation of the detective quantum efficiency of direct and indirect conversion detector technologies in dedicated breast CT. Phys. Med. 31, 406–413 (2015).
Datta, A., Fiala, J. & Motakef, S. 2D perovskite-based high spatial resolution X-ray detectors. Sci. Rep. 11, 22897 (2021).
Bernier, J. V., Barton, N. R., Lienert, U. & Miller, M. P. Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 46, 527–547 (2011).
González, A. et al. 1.5 Comprehensive Biophysics Ch1.5 X-Ray Crystallography: Data Collection Strategies and Resources. (Elsevier, 2012).