• Margulies, L., Winther, G. & Poulsen, H. In situ measurement of grain rotation during deformation of polycrystals. Science 291, 2392–2394 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, X., et al. Comparison of simulated and measured grain volume changes during grain growth. Phys. Rev. Mater. 6, 033402 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhattacharya, A. et al. Grain boundary velocity and curvature are not correlated in Ni polycrystals. Science 374, 189–193 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Offerman, S. et al. Grain nucleation and growth during phase transformations. Science 298, 1003–1005 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauridsen, E. M., Poulsen, H. F., Nielsen, S. F. & Juul Jensen, D. Recrystallization kinetics of individual bulk grains in 90% cold-rolled aluminium. Acta Materialia 51, 4423–4435 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roumina, R., et al. The dynamics of recrystallized grains during static recrystallization in a hot-compressed Mg-3.2Zn-0.1Ca wt.% alloy using in-situ far field high-energy diffraction microscopy. Acta Materialia 234, 118039 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, J. V., et al. Evaluating the grain-scale deformation behavior of a single-phase FCC high entropy alloy using synchrotron high energy diffraction microscopy. Acta Materialia 215, 118039 (2021).

    Article 

    Google Scholar
     

  • Schuren, J. C. et al. New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19, 235–244 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abdolvand, H. et al. On the deformation twinning of Mg AZ31B: A three-dimensional synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int. J. Plasticity 70, 77–97 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pokharel, R. et al. In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu. Int. J. Plasticity 67, 217–234 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pagan, D. C. et al. Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements. Acta Materialia 128, 406–417 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pagan, D. C., Nygren, K. E. & Miller, M. P. Analysis of a three-dimensional slip field in a hexagonal Ti alloy from in-situ high-energy X-ray diffraction microscopy data. Acta Materialia 221, 117372 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sedmák, P. et al. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science 353, 559–562 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bucsek, A. N. et al. Ferroelastic twin reorientation mechanisms in shape memory alloys elucidated with 3D X-ray microscopy. J. Mech. Phys. Solids 124, 897–928 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Mechanical twinning and detwinning in pure Ti during loading and unloading – an in situ high-energy X-ray diffraction microscopy study. Scr. Materialia 92, 35–38 (2014).

    Article 

    Google Scholar
     

  • Bucsek, A. N. et al. Three-dimensional in situ characterization of phase transformation induced austenite grain refinement in nickel-titanium. Scr. Materialia 162, 361–366 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. 3D in-situ characterization of dislocation density in nickel-titanium shape memory alloys using high-energy diffraction microscopy. Acta Materialia 266, 119659 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Worsnop, F. F. et al. The influence of alloying on slip intermittency and the implications for dwell fatigue in titanium. Nat. Commun. 13, 5949 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, R. E., Pagan, D. C., Bernier, J. V., Shade, P. A. & Rollett, A. D. Grain reorientation and stress-state evolution during cyclic loading of an α -Ti alloy below the elastic limit. Int. J. Fatigue 156, 106614 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Naragani, D. P., Shade, P. A., Kenesei, P., Sharma, H. & Sangid, M. D. X-ray characterization of the micromechanical response ahead of a propagating small fatigue crack in a Ni-based superalloy. Acta Materialia 179, 342–359 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spear, A. D., Li, S. F., Lind, J. F., Suter, R. M. & Ingraffea, A. R. Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy. Acta Materialia 76, 413–424 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maloth, T. et al. Multiscale modeling of cruciform dwell tests with the uncertainty-quantified parametrically homogenized constitutive model. Acta Materialia 200, 893–907 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hanson, J. P. et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725. Nat. Commun. 9, 3386 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rovinelli, A., Sangid, M. D., Proudhon, H. & Ludwig, W. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. npj Computational Mater. 4, 35 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gustafson, S. et al. Quantifying microscale drivers for fatigue failure via coupled synchrotron X-ray characterization and simulations. Nat. Commun. 11, 3189 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naragani, D. et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy. Acta Materialia 137, 71–84 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Poulsen, H. F., Margulies, L., Schmidt, S. & Winther, G. Lattice rotations of individual bulk grains. Acta Materialia 51, 3821–3830 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suter, R. M., Hennessy, D., Xiao, C. & Lienert, U. Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: single-crystal verification. Rev. Sci. Instrum. 77, 123905 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Lim, R. E. et al. Grain-resolved temperature-dependent anisotropy in hexagonal Ti-7Al revealed by synchrotron X-ray diffraction. Mater. Charact. 174, 110943 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. High-energy x-ray diffraction microscopy study of deformation microstructures in neutron-irradiated polycrystalline Fe-9%Cr. J. Nucl. Mater. 508, 556–566 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sparks, G. et al. 3D Reconstruction of a High-Energy Diffraction Microscopy Sample Using Multi-modal Serial Sectioning with High-Precision EBSD and Surface Profilometry. Integr. Mater. Manuf. Innov. 13, 773–803 (2024).

    Article 

    Google Scholar
     

  • Web of Science. 2004-2023 Times Cited, Journal Citation Reports (Clarivate, 2024).

  • Li, W. et al. Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy. J. Mater. Res. 38, 165–178 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hayashi, Y., Setoyama, D., Hirose, Y., Yoshida, T. & Kimura, H. Intragranular three-dimensional stress tensor fields in plastically deformed polycrystals. Science 366, 1492–1496 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Henningsson, N. A., Hall, S. A., Wright, J. P. & Hektor, J. Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data. J. Appl. Crystallogr. 53, 314–325 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. -S. et al. Far-field high-energy diffraction microscopy: a non-destructive tool for characterizing the microstructure and micromechanical state of polycrystalline materials. Micros. Today 25, 36–45 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Quey, R., Dawson, P. R. & Barbe, F. Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Computer Methods Appl. Mech. Eng. 200, 1729–1745 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Park, J. -S. et al. High-energy synchrotron x-ray techniques for studying irradiated materials. J. Mater. Res. 30, 1380–1391 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Joel B. et al. HEXRD/hexrd: Release 0.9.3. Zenodo https://doi.org/10.5281/ZENODO.8033940 (2023).

  • Wright, J. FABLE-3DXRD/ImageD11. https://github.com/FABLE-3DXRD/ImageD11.

  • Wang, L. et al. Evaluating the Taylor hardening model in polycrystalline Ti using high energy X-ray diffraction microscopy. Scr. Materialia 195, 113743 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pagan, D. C. & Miller, M. P. Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures. Acta Materialia 116, 200–211 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nygren, K. E., Pagan, D. C., Bernier, J. V. & Miller, M. P. An algorithm for resolving intragranular orientation fields using coupled far-field and near-field high energy X-ray diffraction microscopy. Mater. Charact. 165, 110366 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Greeley, D. A., Adams, J. F., Kenesei, P., Spear, A. D. & Allison, J. E. Quantitative analysis of three-dimensional fatigue crack path selection in Mg alloy WE43 using high-energy X-ray diffraction microscopy. Fatigue Fract. Eng. Mat. Struct. 47, 1150–1171 (2024).

    Article 

    Google Scholar
     

  • Bucsek, A. N., Dale, D., Ko, J. Y. P., Chumlyakov, Y. & Stebner, A. P. Measuring stress-induced martensite microstructures using far-field high-energy diffraction microscopy. Acta Crystallogr A Found. Adv. 74, 425–446 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thibault, P. & Elser, V. X-ray diffraction microscopy. Annu. Rev. Condens. Matter Phys. 1, 237–255 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, M. et al. X-Ray Diffraction for Materials Research: From Fundamentals to Applications. (Apple Academic Press, Oakville, ON, Canada; Waretown, NJ, USA, 2016).

  • Warren, B. E. et al. X-Ray Diffraction. (Dover Publications, New York, 1990).

  • King, A., Johnson, G., Engelberg, D., Ludwig, W. & Marrow, J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321, 382–385 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig, W., Schmidt, S., Lauridsen, E. M. & Poulsen, H. F. X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. direct beam case. J. Appl Crystallogr 41, 302–309 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reischig, P. et al. Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials. J. Appl Crystallogr 46, 297–311 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McDonald, S. A. et al. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci. Rep. 5, (2015). 14665.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachmann, F., Bale, H., Gueninchault, N., Holzner, C. & Lauridsen, E. M. 3D grain reconstruction from laboratory diffraction contrast tomography. J. Appl Crystallogr 52, 643–651 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, S. A. et al. Tracking polycrystal evolution non-destructively in 3D by laboratory X-ray diffraction contrast tomography. Mater. Charact. 172, 110814 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y., Niverty, S., Ma, X. & Chawla, N. Correlation between corrosion behavior and grain boundary characteristics of a 6061 Al alloy by lab-scale X-ray diffraction contrast tomography (DCT). Mater. Charact. 193, 112325 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sirdesai, N. N., Singh, T. N. & Pathegama Gamage, R. Thermal alterations in the poro-mechanical characteristic of an Indian sandstone – a comparative study. Eng. Geol. 226, 208–220 (2017).

    Article 

    Google Scholar
     

  • Li, T., Senesi, A. J. & Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 116, 11128–11180 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, M. H. J. SAXS Instrumentation for Synchrotron Radiation then and now. J. Phys.: Conf. Ser. 247, 012001 (2010).


    Google Scholar
     

  • Ilavsky, J. et al. Ultra-small-angle X-ray scattering at the Advanced Photon Source. J. Appl Crystallogr 42, 469–479 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hexemer, A. & Müller-Buschbaum, P. Advanced grazing-incidence techniques for modern soft-matter materials analysis. IUCrJ 2, 106–125 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gräwert, T. W. & Svergun, D. I. Structural Modeling Using Solution Small-Angle X-ray Scattering (SAXS). J. Mol. Biol. 432, 3078–3092 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xiong, B., Chen, R., Zeng, F., Kang, J. & Men, Y. Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: In-situ ultra-small angle X-ray scattering study. J. Membr. Sci. 545, 213–220 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kikhney, A. G. & Svergun, D. I. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 589, 2570–2577 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolze, J. & Gateshki, M. Highly versatile laboratory X-ray scattering instrument enabling (nano-)material structure analysis on multiple length scales by covering a scattering vector range of almost five decades. Rev. Sci. Instrum. 90, 123103 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bernier, J. V., Suter, R. M., Rollett, A. D. & Almer, J. D. High-Energy X-Ray Diffraction Microscopy in Materials Science. Annu. Rev. Mater. Res. 50, 395–436 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ganju, E., Nieto-Valeiras, E., LLorca, J. & Chawla, N. A novel diffraction contrast tomography (DCT) acquisition strategy for capturing the 3D crystallographic structure of pure titanium. Tomogr. Mater. Struct. 1, 100003 (2023).


    Google Scholar
     

  • Greeley, D. A. et al. Quantitative three-dimensional investigation of cyclic deformation mechanisms in Mg Alloys. https://doi.org/10.7302/8163 (2023).

  • Fang, H., Ludwig, W. & Lhuissier, P. Reconstruction algorithms for grain mapping by laboratory X-ray diffraction contrast tomography. J. Appl Crystallogr 55, 1652–1663 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. P. et al. Enhancing the signal-to-noise ratio of x-ray diffraction profiles by smoothed principal component analysis. Anal. Chem. 77, 6563–6570 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, A. V. et al. Noise-robust coherent diffractive imaging with a single diffraction pattern. Opt. Express 20, 16650 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Larsson, D. H., Takman, P. A. C., Lundström, U., Burvall, A. & Hertz, H. M. A 24 keV liquid-metal-jet x-ray source for biomedical applications. Rev. Sci. Instrum. 82, 123701 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lechowski, B. et al. Laboratory X-ray Microscopy of 3D Nanostructures in the Hard X-ray Regime Enabled by a Combination of Multilayer X-ray Optics. Nanomaterials 14, 233 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moy, J.-P. Large area X-ray detectors based on amorphous silicon technology. Thin Solid Films 337, 213–221 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuttig, J. D. et al. Comparative investigation of the detective quantum efficiency of direct and indirect conversion detector technologies in dedicated breast CT. Phys. Med. 31, 406–413 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Datta, A., Fiala, J. & Motakef, S. 2D perovskite-based high spatial resolution X-ray detectors. Sci. Rep. 11, 22897 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernier, J. V., Barton, N. R., Lienert, U. & Miller, M. P. Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 46, 527–547 (2011).

    Article 

    Google Scholar
     

  • González, A. et al. 1.5 Comprehensive Biophysics Ch1.5 X-Ray Crystallography: Data Collection Strategies and Resources. (Elsevier, 2012).