Cassidy, E., Torrential rain wreaks havoc in Libya — earthobservatory.nasa.gov https://earthobservatory.nasa.gov/images/151826/torrential-rain-wreaks-havoc-in-libya (2023).
Rim Taher. A year of rebuilding Libya’s flood-hit Derna was plagued by politics https://www.al-monitor.com/originals/2024/09/year-rebuilding-libyas-flood-hit-derna-plagued-politics (2024).
Gazzini, C., When the dams in Libya Burst: a natural or preventable disaster?—crisisgroup.org. https://www.crisisgroup.org/middle-east-north-africa/north-africa/libya/when-dams-libya-burst-natural-or-preventable-disaster.
Flemming, L., Libya floods: entire neighbourhoods dragged into the sea—bbc.com. https://www.bbc.com/news/world-africa-66785466.
Sky News. Libya: warning over shortage of body bags as disease may compound deaths in flood-hit city. https://news.sky.com/story/libya-warning-over-shortage-of-body-bags-as-disease-may-compound-deaths-in-flood-hit-city-12960801 (2023).
Patrick Smith. Libya floods: death toll in Derna rises as rescue efforts continue. https://www.nbcnews.com/news/world/libya-floods-death-toll-derna-rcna105001 (2023).
Detring, C., Müller, A., Schielicke, L., Névir, P. & Rust, H. W. Atmospheric blocking types: frequencies and transitions. Weather Clim. Dyn. Discuss. 2020, 1–33 (2020).
Daniel, the meteo-hydrological updates in Libya—CIMA Research Foundation—cimafoundation.org. https://www.cimafoundation.org/en/news/daniel-the-meteo-hydrological-updates-in-libya/.
Cohen, L., “Historic flooding event” in Greece dumps more than 2 feet of rain in just a few hours — cbsnews.com https://www.cbsnews.com/news/greece-historic-flooding-more-than-2-feet-of-rain-in-just-a-few-hours/ (2023).
CEAM. Mediterranean sea surface temperature trend https://www.ceam.es/ceamet/SST/SST-trend.html (2023).
Henson, B., Masters, J. The Libya floods: a climate and infrastructure catastrophe https://yaleclimateconnections.org/2023/09/the-libya-floods-a-climate-and-infrastructure-catastrophe/ (2023).
Loveluck, L., Ludwig, J., Chamaa, M.E., Dadouch, S. ‘Catastrophe’ in Libya’s Derna as deadly floods engulf city https://www.washingtonpost.com/world/2023/10/05/libya-derna-floods-disaster-government/ (2023).
Ashoor, A. A. Estimation of the surface runoff depth of wadi derna basin by integrating the geographic information systems and soil conservation service (scs-cn) model. J. Pure Appl. Sci. 21, 90–100 (2022).
Abagandura, G. O., Park, D., White, D. & JR, W. C. B. Modelling soil degradation in Libya. J. Nat. Sci. Res. 7, 30–40 (2017).
Maksin, B., Wadi Derna—Libya – Hidrotehnika – Hidroenergetika a.d. — hidrotehnika.rs. https://www.hidrotehnika.rs/en/libya/wadi-derna/.
Petley, D., Further information about the Wadi Derna dams https://eos.org/thelandslideblog/further-information-about-the-wadi-derna-dams (2023).
Ashoor, A., Eladawy, A. Navigating catastrophe: lessons from Derna amid intensified flash floods in the anthropocene. Euro Mediterr. J. Environ. Integr. 9, 1125–1140 (2024).
Yee, V. Years of Graft doomed 2 dams in Libya, leaving thousands in muddy graves — nytimes.com https://www.nytimes.com/2023/09/27/world/middleeast/libya-flooding-derna-corruption.html (2023).
Scolobig, A., De Marchi, B. & Borga, M. The missing link between flood risk awareness and preparedness: findings from case studies in an alpine region. Nat. Hazards 63, 499–520 (2012).
Burningham, K., Fielding, J. & Thrush, D. ‘It’ll never happen to me’: understanding public awareness of local flood risk. Disasters 32, 216–238 (2008).
Bodoque, J. M., Díez-Herrero, A., Amérigo, M., García, J. A. & Olcina, J. Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: a pre-post survey design. J. Hydrol. 568, 769–779 (2019).
Maidl, E. & Buchecker, M. Raising risk preparedness by flood risk communication. Nat. Hazards Earth Sys. Sci. 15, 1577–1595 (2015).
Lechowska, E. What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Nat. Hazards 94, 1341–1366 (2018).
Meyer, V., Priest, S. & Kuhlicke, C. Economic evaluation of structural and non-structural flood risk management measures: examples from the Mulde River. Nat. Hazards 62, 301–324 (2012).
Dawson, R. J., Ball, T., Werritty, J., Werritty, A., Hall, J. W. & Roche, N. Assessing the effectiveness of non-structural flood management measures in the thames estuary under conditions of socio-economic and environmental change. Glob. Environ. Change 21, 628–646 (2011).
Schanze, J. et al. Systematisation, evaluation and context conditions of structural and non-structural measures for flood risk reduction. (CRUE Research report; No. I-1). CRUE Funding Initiative on Flood Risk Management Research. http://www.flood-era.ioer.de/files/FLOOD-ERA_Final_report.pdf (2008).
Salman, A. M. & Li, Y. Flood risk assessment, future trend modeling, and risk communication: a review of ongoing research. Nat. Hazards Rev. 19, 04018011 (2018).
Molinari, D., De Bruijn, K. M., Castillo-Rodríguez, J. T., Aronica, G. T. & Bouwer, L. M. Validation of flood risk models: current practice and possible improvements. Int. J. Dis. Risk Reduct. 33, 441–448 (2019).
Puth, M.-T., Neuhäuser, M. & Ruxton, G. D. On the variety of methods for calculating confidence intervals by bootstrapping. J. Anim. Ecol. 84, 892–897 (2015).
Osta, M. M. E. & Masoud, M. H. Implementation of a hydrologic model and GIS for estimating wadi runoff in Dernah area, Al Jabal Al Akhadar, NE Libya. J. Afr. Earth Sci. 107, 36–56 (2015).
Ashoor, A. & Eladawy, A. Watch and Upgrade or Deconstruct and Relocate: Derna Catastrophe Lessons Amid the Climate-change Era of Unpredictable Flash Floods, 17 January 2024, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-3858769/v1 (2024).
Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P. Hydrologic and water quality models: performance measures and evaluation criteria. Trans. ASABE 58, 1763–1785 (2015).
Maxar Technologies. Libya Floods September 2023. Maxar Open Data Program. (2023). https://www.maxar.com/open-data/libya-floods-0923. The imagery is used under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) with attribution to Maxar Technologies. License details available at: https://creativecommons.org/licenses/by-nc/4.0/.
Tanim, A. H., McRae, C. B., Tavakol-Davani, H. & Goharian, E. Flood detection in urban areas using satellite imagery and machine learning. Water 14, 1140 (2022).
Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005).
Di Baldassarre, G. et al. Hess opinions: an interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrol. Earth System Sci. 22, 5629–5637 (2018).
Di Baldassarre, G. et al. Socio-hydrology: conceptualising human-flood interactions. Hydrol. Earth System Sci. 17, 3295–3303 (2013).
Tobin, G. A. The levee love affair: a stormy relationship?1. JAWRA 31, 359–367 (1995).
Jaber, Z., Aggarwal, M., Smith, P. Why was the Libya flooding so deadly? — nbcnews.com https://www.nbcnews.com/news/world/libya-flood-explained-conflict-corruption-climate-change-derna-dams-rcna105219 (2023).
Reuter. Casualties in Libya floods could have been avoided with warning system: WMO chief https://www.reuters.com/world/africa/casualties-libya-floods-could-have-been-avoided-with-warning-system-wmo-chief-2023-09-14/ (2023).
Choi, J.-H., Jun, C., Liu, P., Kim, J.-S. & Moon, Y.-I. Resolving emerging issues with aging dams under climate change projections. J. Water Resour. Plan. Manag. 146, 04020025 (2020).
Beatty, S. et al. Rethinking refuges: implications of climate change for dam busting. Biol. Conserv. 209, 188–195 (2017).
Tian, Y., Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 37, 24 (2010).
Tanim, A. H., Mullick, M. R. A. & Sikdar, M. S. Evaluation of spatial rainfall products in sparsely gauged region using copula uncertainty modeling with triple collocation. J. Hydrol. Eng. 26, 04021004 (2021).
Tozer, B. et al. Global bathymetry and topography at 15 arc sec: SRTM15+. Distributed by OpenTopography. https://doi.org/10.5069/G92R3PT9 (2019).
Japan Aerospace Exploration Agency. ALOS World 3D 30 meter DEM, Version 3.2. Distributed by OpenTopography. https://doi.org/10.5069/G94M92HB (2021).
Neal, J., Hawker, L. FABDEM V1-2. University of Bristol. https://doi.org/10.5523/BRIS.S5HQMJCDJ8YO2IBZI9B4EW3SN (2023).
Hawker, L. et al. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett. 17, 024016 (2022).
Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).
Zhang, K. et al. Accuracy assessment of aster, srtm, alos, and tdx dems for hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 225, 290–306 (2019).
Chymyrov, A. Comparison of different dems for hydrological studies in the mountainous areas. Egypt. J. Remote Sens. Space Sci. 24, 587–594 (2021).
Kubota, T. et al. Global satellite mapping of precipitation (GSMaP) products in the GPM era. In Satellite Precipitation Measurement Vol. 1, 355–373 (Springer, 2020).
Muñoz Sabater, J. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac. https://cds.climate.copernicus.eu/ (2019).
Weather Underground. Weather history and data archive. https://www.wunderground.com/ (2023).
Feldman, A.D. Hydrologic Modeling System HEC-HMS: Technical Reference Manual. US Army Corps of Engineers, Hydrologic Engineering Center (2000).
WMS—The All-in-one Watershed Solution — Aquaveo.com — aquaveo.com. https://www.aquaveo.com/software/wms-watershed-modeling-system-introduction.
USDA-NRCS. Chapter 10: Estimation of direct runoff from storm rainfall. In NRCS National Engineering Handbook Part 630: Hydrology, Ch. 10 (USDA-NRCS, 2004).
Schneider, L. E. & McCuen, R. H. Statistical guidelines for curve number generation. J. Irrig. Drain. Eng. 131, 282–290 (2005).
Gao, B.-C. Ndwi-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).
McFeeters, S. K. The use of the normalized difference water index (ndwi) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).
Merz, B. & Plate, E. J. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Res. Res. 33, 2909–2922 (1997).
Castillo Sánchez, V.M., Gómez-Plaza, A., Martínez-Mena García, M.D. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. J. Hydrol. 284, 114–130 (2003).
Brocca, L., Melone, F., Moramarco, T. & Singh, V. Assimilation of observed soil moisture data in storm rainfall-runoff modeling. J. Hydrol. Eng. 14, 153–165 (2009).
Gamage, S., Hewa, G. & Beecham, S. Modelling hydrological losses for varying rainfall and moisture conditions in south australian catchments. J. Hydrol. Reg. Stud. 4, 1–21 (2015).
Cunge, J. A. On the subject of a flood propagation computation method (muskingum method). J. Hydraul. Res. 7, 205–230 (1969).
Te Chow, V. Open Channel Hydraulics (McGraw-Hill, 1959).
Kirpich, T. P. Time of concentration of small agricultural watersheds. J. Civ. Eng. 10, 362 (1940).
Mockus, V. Use of Storm and Watershed Characteristics in Synthetic Hydrograph Analysis and Application (American Geophysical Union, Pacific Southwest Region, 1957).
de Simas, M. J. C. Lag-time characteristics in small watersheds in the United States (Doctoral dissertation, University of Arizona). ProQuest Dissertations & Theses Global. (Publication No. 9713386). Retrieved from https://www.proquest.com/dissertations-theses/lag-time-characteristics-small-watersheds-united/docview/304298378/se-2 (1996).
AghaKouchak, A., Bárdossy, A. & Habib, E. Copula-based uncertainty modelling: application to multisensor precipitation estimates. Hydrol. Process. 24, 2111–2124 (2010).
Žežula, I. On multivariate Gaussian copulas. J. Stat. Plan. Inference 139, 3942–3946 (2009).
Demarta, S. & McNeil, A. J. The t copula and related copulas. Int. Stat. Rev. 73, 111–129 (2005).
McNeil, A. J. Sampling nested archimedean copulas. J. Stat. Comput. Simul. 78, 567–581 (2008).
Hofert, M., Mächler, M. & McNeil, A. J. Likelihood inference for archimedean copulas in high dimensions under known margins. J. Multivar. Anal. 110, 133–150 (2012).
Liebscher, E. Fitting copulas in the case of missing data. Stat. Papers 65, 3681–3711 (2024).
De Maesschalck, R., Candolfi, A., Massart, D. & Heuerding, S. Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemom. Intell. Lab. Syst. 47, 65–77 (1999).
Hydraulic Engineering Center. HEC-RAS River Analysis System https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_Users_Manual_65_Beta.pdf (2023).
Froehlich, D.C. Embankment dam breach parameters revisited. In Proc. Conference on Water Resources Engineering (ASCE, 1995).
Froehlich, D. C. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 134, 1708–1721 (2008).
MacDonald, T. C. & Langridge-Monopolis, J. Breaching characteristics of dam failures. J. Hydraul. Eng. 110, 567–586 (1984).
Von Thun, J.L., Gillette, D.R. Guidance on Breach Parameters. Internal Memorandum (U.S. Department of the Interior, Bureau of Reclamation,1990).
Xu, Y. & Zhang, L. M. Breaching parameters for earth and rockfill dams. J. Geotech. Geoenvironmental Eng. 135, 1957–1970 (2009).
Brinkgreve, R., Broere, W., Waterman, D. PLAXIS 2D-Version 8 Tutorial Manual (Plaxisbv, 2006).