• Cassidy, E., Torrential rain wreaks havoc in Libya — earthobservatory.nasa.gov https://earthobservatory.nasa.gov/images/151826/torrential-rain-wreaks-havoc-in-libya (2023).

  • Rim Taher. A year of rebuilding Libya’s flood-hit Derna was plagued by politics https://www.al-monitor.com/originals/2024/09/year-rebuilding-libyas-flood-hit-derna-plagued-politics (2024).

  • Gazzini, C., When the dams in Libya Burst: a natural or preventable disaster?—crisisgroup.org. https://www.crisisgroup.org/middle-east-north-africa/north-africa/libya/when-dams-libya-burst-natural-or-preventable-disaster.

  • Flemming, L., Libya floods: entire neighbourhoods dragged into the sea—bbc.com. https://www.bbc.com/news/world-africa-66785466.

  • Sky News. Libya: warning over shortage of body bags as disease may compound deaths in flood-hit city. https://news.sky.com/story/libya-warning-over-shortage-of-body-bags-as-disease-may-compound-deaths-in-flood-hit-city-12960801 (2023).

  • Patrick Smith. Libya floods: death toll in Derna rises as rescue efforts continue. https://www.nbcnews.com/news/world/libya-floods-death-toll-derna-rcna105001 (2023).

  • Detring, C., Müller, A., Schielicke, L., Névir, P. & Rust, H. W. Atmospheric blocking types: frequencies and transitions. Weather Clim. Dyn. Discuss. 2020, 1–33 (2020).


    Google Scholar
     

  • Daniel, the meteo-hydrological updates in Libya—CIMA Research Foundation—cimafoundation.org. https://www.cimafoundation.org/en/news/daniel-the-meteo-hydrological-updates-in-libya/.

  • Cohen, L., “Historic flooding event” in Greece dumps more than 2 feet of rain in just a few hours — cbsnews.com https://www.cbsnews.com/news/greece-historic-flooding-more-than-2-feet-of-rain-in-just-a-few-hours/ (2023).

  • CEAM. Mediterranean sea surface temperature trend https://www.ceam.es/ceamet/SST/SST-trend.html (2023).

  • Henson, B., Masters, J. The Libya floods: a climate and infrastructure catastrophe https://yaleclimateconnections.org/2023/09/the-libya-floods-a-climate-and-infrastructure-catastrophe/ (2023).

  • Loveluck, L., Ludwig, J., Chamaa, M.E., Dadouch, S. ‘Catastrophe’ in Libya’s Derna as deadly floods engulf city https://www.washingtonpost.com/world/2023/10/05/libya-derna-floods-disaster-government/ (2023).

  • Ashoor, A. A. Estimation of the surface runoff depth of wadi derna basin by integrating the geographic information systems and soil conservation service (scs-cn) model. J. Pure Appl. Sci. 21, 90–100 (2022).


    Google Scholar
     

  • Abagandura, G. O., Park, D., White, D. & JR, W. C. B. Modelling soil degradation in Libya. J. Nat. Sci. Res. 7, 30–40 (2017).


    Google Scholar
     

  • Maksin, B., Wadi Derna—Libya – Hidrotehnika – Hidroenergetika a.d. — hidrotehnika.rs. https://www.hidrotehnika.rs/en/libya/wadi-derna/.

  • Petley, D., Further information about the Wadi Derna dams https://eos.org/thelandslideblog/further-information-about-the-wadi-derna-dams (2023).

  • Ashoor, A., Eladawy, A. Navigating catastrophe: lessons from Derna amid intensified flash floods in the anthropocene. Euro Mediterr. J. Environ. Integr. 9, 1125–1140 (2024).

  • Yee, V. Years of Graft doomed 2 dams in Libya, leaving thousands in muddy graves — nytimes.com https://www.nytimes.com/2023/09/27/world/middleeast/libya-flooding-derna-corruption.html (2023).

  • Scolobig, A., De Marchi, B. & Borga, M. The missing link between flood risk awareness and preparedness: findings from case studies in an alpine region. Nat. Hazards 63, 499–520 (2012).

    Article 

    Google Scholar
     

  • Burningham, K., Fielding, J. & Thrush, D. ‘It’ll never happen to me’: understanding public awareness of local flood risk. Disasters 32, 216–238 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bodoque, J. M., Díez-Herrero, A., Amérigo, M., García, J. A. & Olcina, J. Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: a pre-post survey design. J. Hydrol. 568, 769–779 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Maidl, E. & Buchecker, M. Raising risk preparedness by flood risk communication. Nat. Hazards Earth Sys. Sci. 15, 1577–1595 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lechowska, E. What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Nat. Hazards 94, 1341–1366 (2018).

    Article 

    Google Scholar
     

  • Meyer, V., Priest, S. & Kuhlicke, C. Economic evaluation of structural and non-structural flood risk management measures: examples from the Mulde River. Nat. Hazards 62, 301–324 (2012).

    Article 

    Google Scholar
     

  • Dawson, R. J., Ball, T., Werritty, J., Werritty, A., Hall, J. W. & Roche, N. Assessing the effectiveness of non-structural flood management measures in the thames estuary under conditions of socio-economic and environmental change. Glob. Environ. Change 21, 628–646 (2011).

    Article 

    Google Scholar
     

  • Schanze, J. et al. Systematisation, evaluation and context conditions of structural and non-structural measures for flood risk reduction. (CRUE Research report; No. I-1). CRUE Funding Initiative on Flood Risk Management Research. http://www.flood-era.ioer.de/files/FLOOD-ERA_Final_report.pdf (2008).

  • Salman, A. M. & Li, Y. Flood risk assessment, future trend modeling, and risk communication: a review of ongoing research. Nat. Hazards Rev. 19, 04018011 (2018).

    Article 

    Google Scholar
     

  • Molinari, D., De Bruijn, K. M., Castillo-Rodríguez, J. T., Aronica, G. T. & Bouwer, L. M. Validation of flood risk models: current practice and possible improvements. Int. J. Dis. Risk Reduct. 33, 441–448 (2019).

    Article 

    Google Scholar
     

  • Puth, M.-T., Neuhäuser, M. & Ruxton, G. D. On the variety of methods for calculating confidence intervals by bootstrapping. J. Anim. Ecol. 84, 892–897 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Osta, M. M. E. & Masoud, M. H. Implementation of a hydrologic model and GIS for estimating wadi runoff in Dernah area, Al Jabal Al Akhadar, NE Libya. J. Afr. Earth Sci. 107, 36–56 (2015).

    Article 

    Google Scholar
     

  • Ashoor, A. & Eladawy, A. Watch and Upgrade or Deconstruct and Relocate: Derna Catastrophe Lessons Amid the Climate-change Era of Unpredictable Flash Floods, 17 January 2024, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-3858769/v1 (2024).

  • Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P. Hydrologic and water quality models: performance measures and evaluation criteria. Trans. ASABE 58, 1763–1785 (2015).

    Article 

    Google Scholar
     

  • Maxar Technologies. Libya Floods September 2023. Maxar Open Data Program. (2023). https://www.maxar.com/open-data/libya-floods-0923. The imagery is used under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) with attribution to Maxar Technologies. License details available at: https://creativecommons.org/licenses/by-nc/4.0/.

  • Tanim, A. H., McRae, C. B., Tavakol-Davani, H. & Goharian, E. Flood detection in urban areas using satellite imagery and machine learning. Water 14, 1140 (2022).

    Article 

    Google Scholar
     

  • Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005).

    Article 

    Google Scholar
     

  • Di Baldassarre, G. et al. Hess opinions: an interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrol. Earth System Sci. 22, 5629–5637 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Di Baldassarre, G. et al. Socio-hydrology: conceptualising human-flood interactions. Hydrol. Earth System Sci. 17, 3295–3303 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tobin, G. A. The levee love affair: a stormy relationship?1. JAWRA 31, 359–367 (1995).

    ADS 

    Google Scholar
     

  • Jaber, Z., Aggarwal, M., Smith, P. Why was the Libya flooding so deadly? — nbcnews.com https://www.nbcnews.com/news/world/libya-flood-explained-conflict-corruption-climate-change-derna-dams-rcna105219 (2023).

  • Reuter. Casualties in Libya floods could have been avoided with warning system: WMO chief https://www.reuters.com/world/africa/casualties-libya-floods-could-have-been-avoided-with-warning-system-wmo-chief-2023-09-14/ (2023).

  • Choi, J.-H., Jun, C., Liu, P., Kim, J.-S. & Moon, Y.-I. Resolving emerging issues with aging dams under climate change projections. J. Water Resour. Plan. Manag. 146, 04020025 (2020).

    Article 

    Google Scholar
     

  • Beatty, S. et al. Rethinking refuges: implications of climate change for dam busting. Biol. Conserv. 209, 188–195 (2017).

    Article 

    Google Scholar
     

  • Tian, Y., Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 37, 24 (2010).

  • Tanim, A. H., Mullick, M. R. A. & Sikdar, M. S. Evaluation of spatial rainfall products in sparsely gauged region using copula uncertainty modeling with triple collocation. J. Hydrol. Eng. 26, 04021004 (2021).

    Article 

    Google Scholar
     

  • Tozer, B. et al. Global bathymetry and topography at 15 arc sec: SRTM15+. Distributed by OpenTopography. https://doi.org/10.5069/G92R3PT9 (2019).

  • Japan Aerospace Exploration Agency. ALOS World 3D 30 meter DEM, Version 3.2. Distributed by OpenTopography. https://doi.org/10.5069/G94M92HB (2021).

  • Neal, J., Hawker, L. FABDEM V1-2. University of Bristol. https://doi.org/10.5523/BRIS.S5HQMJCDJ8YO2IBZI9B4EW3SN (2023).

  • Hawker, L. et al. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett. 17, 024016 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, K. et al. Accuracy assessment of aster, srtm, alos, and tdx dems for hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 225, 290–306 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chymyrov, A. Comparison of different dems for hydrological studies in the mountainous areas. Egypt. J. Remote Sens. Space Sci. 24, 587–594 (2021).


    Google Scholar
     

  • Kubota, T. et al. Global satellite mapping of precipitation (GSMaP) products in the GPM era. In Satellite Precipitation Measurement Vol. 1, 355–373 (Springer, 2020).

  • Muñoz Sabater, J. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac. https://cds.climate.copernicus.eu/ (2019).

  • Weather Underground. Weather history and data archive. https://www.wunderground.com/ (2023).

  • Feldman, A.D. Hydrologic Modeling System HEC-HMS: Technical Reference Manual. US Army Corps of Engineers, Hydrologic Engineering Center (2000).

  • WMS—The All-in-one Watershed Solution — Aquaveo.com — aquaveo.com. https://www.aquaveo.com/software/wms-watershed-modeling-system-introduction.

  • USDA-NRCS. Chapter 10: Estimation of direct runoff from storm rainfall. In NRCS National Engineering Handbook Part 630: Hydrology, Ch. 10 (USDA-NRCS, 2004).

  • Schneider, L. E. & McCuen, R. H. Statistical guidelines for curve number generation. J. Irrig. Drain. Eng. 131, 282–290 (2005).

    Article 

    Google Scholar
     

  • Gao, B.-C. Ndwi-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).

    Article 
    ADS 

    Google Scholar
     

  • McFeeters, S. K. The use of the normalized difference water index (ndwi) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).

    Article 

    Google Scholar
     

  • Merz, B. & Plate, E. J. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Res. Res. 33, 2909–2922 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Castillo Sánchez, V.M., Gómez-Plaza, A., Martínez-Mena García, M.D. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. J. Hydrol. 284, 114–130 (2003).

  • Brocca, L., Melone, F., Moramarco, T. & Singh, V. Assimilation of observed soil moisture data in storm rainfall-runoff modeling. J. Hydrol. Eng. 14, 153–165 (2009).

    Article 

    Google Scholar
     

  • Gamage, S., Hewa, G. & Beecham, S. Modelling hydrological losses for varying rainfall and moisture conditions in south australian catchments. J. Hydrol. Reg. Stud. 4, 1–21 (2015).

    Article 

    Google Scholar
     

  • Cunge, J. A. On the subject of a flood propagation computation method (muskingum method). J. Hydraul. Res. 7, 205–230 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Te Chow, V. Open Channel Hydraulics (McGraw-Hill, 1959).

  • Kirpich, T. P. Time of concentration of small agricultural watersheds. J. Civ. Eng. 10, 362 (1940).


    Google Scholar
     

  • Mockus, V. Use of Storm and Watershed Characteristics in Synthetic Hydrograph Analysis and Application (American Geophysical Union, Pacific Southwest Region, 1957).

  • de Simas, M. J. C. Lag-time characteristics in small watersheds in the United States (Doctoral dissertation, University of Arizona). ProQuest Dissertations & Theses Global. (Publication No. 9713386). Retrieved from https://www.proquest.com/dissertations-theses/lag-time-characteristics-small-watersheds-united/docview/304298378/se-2 (1996).

  • AghaKouchak, A., Bárdossy, A. & Habib, E. Copula-based uncertainty modelling: application to multisensor precipitation estimates. Hydrol. Process. 24, 2111–2124 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Žežula, I. On multivariate Gaussian copulas. J. Stat. Plan. Inference 139, 3942–3946 (2009).

    Article 
    MathSciNet 

    Google Scholar
     

  • Demarta, S. & McNeil, A. J. The t copula and related copulas. Int. Stat. Rev. 73, 111–129 (2005).

    Article 

    Google Scholar
     

  • McNeil, A. J. Sampling nested archimedean copulas. J. Stat. Comput. Simul. 78, 567–581 (2008).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hofert, M., Mächler, M. & McNeil, A. J. Likelihood inference for archimedean copulas in high dimensions under known margins. J. Multivar. Anal. 110, 133–150 (2012).

    Article 
    MathSciNet 

    Google Scholar
     

  • Liebscher, E. Fitting copulas in the case of missing data. Stat. Papers 65, 3681–3711 (2024).

  • De Maesschalck, R., Candolfi, A., Massart, D. & Heuerding, S. Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemom. Intell. Lab. Syst. 47, 65–77 (1999).

    Article 

    Google Scholar
     

  • Hydraulic Engineering Center. HEC-RAS River Analysis System https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_Users_Manual_65_Beta.pdf (2023).

  • Froehlich, D.C. Embankment dam breach parameters revisited. In Proc. Conference on Water Resources Engineering (ASCE, 1995).

  • Froehlich, D. C. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 134, 1708–1721 (2008).

    Article 

    Google Scholar
     

  • MacDonald, T. C. & Langridge-Monopolis, J. Breaching characteristics of dam failures. J. Hydraul. Eng. 110, 567–586 (1984).

    Article 

    Google Scholar
     

  • Von Thun, J.L., Gillette, D.R. Guidance on Breach Parameters. Internal Memorandum (U.S. Department of the Interior, Bureau of Reclamation,1990).

  • Xu, Y. & Zhang, L. M. Breaching parameters for earth and rockfill dams. J. Geotech. Geoenvironmental Eng. 135, 1957–1970 (2009).

    Article 

    Google Scholar
     

  • Brinkgreve, R., Broere, W., Waterman, D. PLAXIS 2D-Version 8 Tutorial Manual (Plaxisbv, 2006).