Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene, Science, vol. 351, no. 6269, [Online]. Available: http://nora.nerc.ac.uk/512756/ Jan. (2016).
Cihlar, J. & Jansen, L. J. From land cover to land use: a methodology for efficient land use mapping over large areas. The Professional Geographer 53(no. 2), 275–289 (2001).
Wulder, M. & Franklin, S. Remote Sensing of Forest Environments. Boston: Kluwer Academic Publishers (2003).
Woodcock, C. E. et al. Free Access to Landsat Imagery, Science (New York, N.Y.), vol. 320, no. May, (2008).
Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data, Remote Sensing of Environment, vol. 122, pp. 66–74, https://doi.org/10.1016/j.rse.2011.08.024 (2012).
Bossard, M., Feranec, J., Otahel, J. & others, CORINE land cover technical guide: Addendum 2000, (2000).
Montero, E., Van Wolvelaer, J. & Garzón, A. The European urban atlas, in Land use and land cover mapping in Europe, pp. 115–124 (Springer, 2014).
Chen, J. et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing 103, 7–27 (2015).
Bartholome, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing 26(9), 1959–1977 (2005).
Fonte, C. C. et al. Using OpenStreetMap to Create Land Use and Land Cover Maps (2017).
Audebert, N., Le Saux, B. & Lefevre, S. Lefèvre Joint learning from Earth Observation and OpenStreetMap data to get faster better semantic maps, in EARTHVISION 2017 IEEE/ISPRS CVPR Workshop. Large Scale Computer Vision for Remote Sensing Imagery (2017).
Arsanjani, J. J., Helbich, M., Bakillah, M., Hagenauer, J. & Zipf, A. Toward mapping land-use patterns from volunteered geographic information, International Journal of Geographical Information Science, 27(12), pp. 2264–2278 (2013).
Fonte, C. C. et al. Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using OpenStreetMap and GlobeLand30. ISPRS International Journal of Geo-Information 6(4), 125 (2017).
Herfort, B., Lautenbach, S., Porto de Albuquerque, J., Anderson, J. & Zipf, A. The evolution of humanitarian mapping within the OpenStreetMap community. Scientific reports 11(1), 1–15 (2021).
Anderson, J., Sarkar, D. & Palen, L. Corporate editors in the evolving landscape of OpenStreetMap. ISPRS International Journal of Geo-Information 8(5), 232 (2019).
Braune, C. & Klump, J. Exploring the Quality and Usability of OpenStreetMap Data, in EGU General Assembly Conference Abstracts, p. 6794 (2014).
Schultz, M., Voss, J., Auer, M., Carter, S. & Zipf, A. Open land cover from OpenStreetMap and remote sensing. International Journal of Applied Earth Observation and Geoinformation 63, 206–213 (2017).
Patriarca, J., Fonte, C. C., Estima, J., de Almeida, J.-P. & Cardoso, A. Automatic conversion of OSM data into LULC maps: comparing FOSS4G based approaches towards an enhanced performance. Open Geospatial Data, Software and Standards 4(1), 11 (2019).
Munoz, J. E. V., Srivastava, S., Tuia, D. & Falcao, A. X. OpenStreetMap: Challenges and Opportunities in Machine Learning and Remote Sensing, IEEE Geoscience and Remote Sensing Magazine (2020).
Tuia, D., Ratle, F., Pacifici, F., Kanevski, M. F. & Emery, W. J. Active learning methods for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing 47(7), 2218–2232 (2009).
OpenStreetMap contributors, Planet dump retrieved from https://planet.openstreetmap.org/ (2020).
Li, H. et al. Leveraging openstreetmap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection. International Journal of Applied Earth Observation and Geoinformation 110, 102804 (2022).
Hansen, M. C. et al. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment 112(5), 2495–2513, https://doi.org/10.1016/j.rse.2007.11.012 (2008).
Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images, Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2014.12.014 (2015).
Food and Agriculture Organization of the United Nations (FAO), SEPAL: System for Earth Observation Data Access, Processing and Analysis for Land Monitoring. [Online]. Available: https://sepal.io (2020).
Herfort, B., Lautenbach, S., Porto de Albuquerque, J., Anderson, J. & Zipf, A. A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap. Nature Communications 14(1), 3985 (2023).
Li, H. et al. A Multi-Sensor Fusion Framework Based on Coupled Residual Convolutional Neural Networks. Remote Sensing 12(12), 2067 (2020).
He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks, in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645 (Springer, 2016).
Michael, S. et al. OpenStreetMap land use for Europe Research Data, https://doi.org/10.11588/DATA/IUTCDN, heiDATA, V2 (2024)
Feranec, J., Hazeu, G. Kosztra, B. & Stephan, A. CORINE Land Cover Nomenclature, European Landscape Dynamics: CORINE Land Cover Data, p. 17 (2016).
Stehman, S. V. & Foody, G. M. Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment 231, 111199 (2019).
Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data, Remote Sensing of Environment, 37(1), pp. 35–46, https://doi.org/10.1016/0034-4257(91)90048-B (1991).
G. M. Foody, Sample size determination for image classification accuracy assessment and comparison, International Journal of Remote Sensing 30(20), pp. 5273–5291, https://doi.org/10.1080/01431160903130937 (2009).
Gallant, A. L. The challenges of remote monitoring of wetlands, Remote Sensing, 7(8) MDPI, pp. 10938–10950 (2015).