Hatfield, P. W. et al. The data-driven future of high-energy-density physics. Nature 593, 351–361 (2021).
Abu-Shawareb, H. et al. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett. 132, 065102 (2024).
Ren, G. et al. Neutron generation by laser-driven spherically convergent plasma fusion. Phys. Rev. Lett. 118, 165001 (2017).
Zhang, F. et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets. Nat. Phys. 16, 810–814 (2020).
Ziegler, T. et al. Laser-driven high-energy proton beams from cascaded acceleration regimes. Nat. Phys. 20, 1211–1216 (2024).
Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).
Kneip, S. et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6, 980–983 (2010).
Chen, H. et al. Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001 (2009).
Underwood, C. I. D. et al. Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging. Plasma Phys. Controlled Fusion 62, 124002 (2020).
Li, Y. et al. Micro-size picosecond-duration fast neutron source driven by a laser–plasma wakefield electron accelerator. High. Power Laser Sci. Eng. 10, e33 (2022).
Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).
Aguillard, D. P. et al. (The Muon g-2 Collaboration) Measurement of the positive anomalous magnetic moment to 0.02 ppm. Phys. Rev. Lett. 131, 161802 (2023).
Bernstein, R. H. & Cooper, P. S. Charged lepton flavor violation: an experimenter’s guide. Phys. Rep. 532, 27–64 (2013).
Black, K. M. et al. Muon Collider Forum report. JINST 19, T02015 (2024).
Bogomilov, M. et al. (MICE Collaboration) Demonstration of cooling by the Muon Ionization Cooling Experiment. Nature 578, 53–59 (2020).
Morishima, K. et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 387–401 (2017).
Borozdin, K. N. et al. Radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003).
Hillier, A. D. et al. Muon spin spectroscopy. Nat. Rev. Methods Primers 2, 4 (2022).
Yamashita, T. et al. Roles of resonant muonic molecule in new kinetics model and muon catalyzed fusion in compressed gas. Sci. Rep. 12, 6393 (2022).
Carneet, A. et al. The ISIS pulsed muon facility: past, present and future. Hyperfine Interact. 65, 1175–1181 (1991).
Miyake, Y. et al. J-PARC Muon Facility, MUSE. Phys. Proc. 30, 46–49 (2012).
Shimomura, K. et al. Pulsed muon facility of J-PARC MUSE. Interactions 245, 31 (2024).
Grillenberger, J., Baumgarten, C. & Seidel, M. The High Intensity Proton Accelerator Facility. SciPost Phys. Proc. 5, 002 (2021).
Marshall, G. M. Muon beams and facilities at TRIUMF. Z. Phys. C. 56, s226–s231 (1992).
Louca, D., MacDougall, G. J. & Williams, T. J. Report from: US Muon Workshop 2021: a road map for a future muon facility February 1–2, 2021. Neutron N. 33, 8–21 (2022).
Wei, J. et al. China Spallation Neutron Source: design, R&D, and outlook. Nucl. Instrum. Methods Phys. Res., Sect. A 600, 10–13 (2009).
Zhou, X. et al. (The HIAF project team) Status of the high-intensity heavy-ion accelerator facility in China. AAPPS Bull. 32, 35 (2022).
Wang, Z. et al. Beam physics design of a superconducting linac. Phys. Rev. Accel. Beams 27, 010101 (2024).
Lv, M., Wang, J. & Khaw, K. A pulsed muon source based on a high-repetition-rate electron accelerator. In Proc. 14th International Particle Accelerator Conference (eds Assmann, R. et al.) 1522–1525 (JACoW Publishing, 2023).
Jeong, J. Y. et al. Design of muon production target system for the RAON μSR facility in Korea. Nucl. Eng. Technol. 53, 2909–2917 (2021).
Gatto, C. et al. Letter of intent: muonium R&D/physics program at the MTA. Preprint at https://arxiv.org/abs/2212.04897
Nagamine, K. Introductory Muon Science (Cambridge Univ. Press, 2003).
Titov, A. I., Kampfer, B. & Takabe, H. Dimuon production by laser-wakefield accelerated electrons. Phys. Rev. Sp. Top. Acc. Beams 12, 111301 (2009).
Rao, B. S. et al. Bright muon source driven by GeV electron beams from a compact laser wakefield accelerator. Plasma Phys. Control. Fusion 60, 095002 (2018).
Nagamine, K. et al. Compact muon source with electron accelerator for a mobile μSR facility. Phys. B 404, 1020–1023 (2009).
Schumaker, W. et al. Making pions with laser light. N. J. Phys. 20, 073008 (2018).
Zhang, F. et al. A new method on diagnostics of muons produced by a short pulse laser. High. Power Laser Sci. Eng. 5, e16 (2017).
Allison, J. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53, 270–278 (2006).
Zhang, Z. et al. The 1 PW/0.1 Hz laser beamline in SULF facility. High. Power Laser Sci. Eng. 8, e4 (2020).
Shrock, J. E. et al. Guided mode evolution and ionization injection in meter-scale multi-GeV laser wakefield accelerators. Phys. Rev. Lett. 133, 045002 (2024).
Calvin, L. et al. Laser-driven muon production for material inspection and imaging. Front. Phys. 11, 1177486 (2023).
Tanaka, K. A. et al. Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76, 013507 (2005).
Morháč, M. et al. Efficient one- and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition. Nucl. Instrum. Methods Phys. Res., Sect. A 401, 385–408 (1997).
Du, P., Kibbe, W. A. & Lin, S. M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22, 2059–2065 (2006).
Zhang F. et al. Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser. figshare https://doi.org/10.6084/m9.figshare.28329446 (2025).