• Hatfield, P. W. et al. The data-driven future of high-energy-density physics. Nature 593, 351–361 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Abu-Shawareb, H. et al. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett. 132, 065102 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ren, G. et al. Neutron generation by laser-driven spherically convergent plasma fusion. Phys. Rev. Lett. 118, 165001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, F. et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets. Nat. Phys. 16, 810–814 (2020).

    Article 

    Google Scholar
     

  • Ziegler, T. et al. Laser-driven high-energy proton beams from cascaded acceleration regimes. Nat. Phys. 20, 1211–1216 (2024).

    Article 

    Google Scholar
     

  • Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kneip, S. et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6, 980–983 (2010).

    Article 

    Google Scholar
     

  • Chen, H. et al. Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Underwood, C. I. D. et al. Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging. Plasma Phys. Controlled Fusion 62, 124002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Micro-size picosecond-duration fast neutron source driven by a laser–plasma wakefield electron accelerator. High. Power Laser Sci. Eng. 10, e33 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Aguillard, D. P. et al. (The Muon g-2 Collaboration) Measurement of the positive anomalous magnetic moment to 0.02 ppm. Phys. Rev. Lett. 131, 161802 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bernstein, R. H. & Cooper, P. S. Charged lepton flavor violation: an experimenter’s guide. Phys. Rep. 532, 27–64 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Black, K. M. et al. Muon Collider Forum report. JINST 19, T02015 (2024).

    Article 

    Google Scholar
     

  • Bogomilov, M. et al. (MICE Collaboration) Demonstration of cooling by the Muon Ionization Cooling Experiment. Nature 578, 53–59 (2020).

    Article 

    Google Scholar
     

  • Morishima, K. et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 387–401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Borozdin, K. N. et al. Radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Hillier, A. D. et al. Muon spin spectroscopy. Nat. Rev. Methods Primers 2, 4 (2022).

    Article 

    Google Scholar
     

  • Yamashita, T. et al. Roles of resonant muonic molecule in new kinetics model and muon catalyzed fusion in compressed gas. Sci. Rep. 12, 6393 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Carneet, A. et al. The ISIS pulsed muon facility: past, present and future. Hyperfine Interact. 65, 1175–1181 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Miyake, Y. et al. J-PARC Muon Facility, MUSE. Phys. Proc. 30, 46–49 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Shimomura, K. et al. Pulsed muon facility of J-PARC MUSE. Interactions 245, 31 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Grillenberger, J., Baumgarten, C. & Seidel, M. The High Intensity Proton Accelerator Facility. SciPost Phys. Proc. 5, 002 (2021).

    Article 

    Google Scholar
     

  • Marshall, G. M. Muon beams and facilities at TRIUMF. Z. Phys. C. 56, s226–s231 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Louca, D., MacDougall, G. J. & Williams, T. J. Report from: US Muon Workshop 2021: a road map for a future muon facility February 1–2, 2021. Neutron N. 33, 8–21 (2022).

    Article 

    Google Scholar
     

  • Wei, J. et al. China Spallation Neutron Source: design, R&D, and outlook. Nucl. Instrum. Methods Phys. Res., Sect. A 600, 10–13 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, X. et al. (The HIAF project team) Status of the high-intensity heavy-ion accelerator facility in China. AAPPS Bull. 32, 35 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Beam physics design of a superconducting linac. Phys. Rev. Accel. Beams 27, 010101 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lv, M., Wang, J. & Khaw, K. A pulsed muon source based on a high-repetition-rate electron accelerator. In Proc. 14th International Particle Accelerator Conference (eds Assmann, R. et al.) 1522–1525 (JACoW Publishing, 2023).

  • Jeong, J. Y. et al. Design of muon production target system for the RAON μSR facility in Korea. Nucl. Eng. Technol. 53, 2909–2917 (2021).

    Article 

    Google Scholar
     

  • Gatto, C. et al. Letter of intent: muonium R&D/physics program at the MTA. Preprint at https://arxiv.org/abs/2212.04897

  • Nagamine, K. Introductory Muon Science (Cambridge Univ. Press, 2003).

  • Titov, A. I., Kampfer, B. & Takabe, H. Dimuon production by laser-wakefield accelerated electrons. Phys. Rev. Sp. Top. Acc. Beams 12, 111301 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Rao, B. S. et al. Bright muon source driven by GeV electron beams from a compact laser wakefield accelerator. Plasma Phys. Control. Fusion 60, 095002 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nagamine, K. et al. Compact muon source with electron accelerator for a mobile μSR facility. Phys. B 404, 1020–1023 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Schumaker, W. et al. Making pions with laser light. N. J. Phys. 20, 073008 (2018).

    Article 

    Google Scholar
     

  • Zhang, F. et al. A new method on diagnostics of muons produced by a short pulse laser. High. Power Laser Sci. Eng. 5, e16 (2017).

    Article 

    Google Scholar
     

  • Allison, J. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53, 270–278 (2006).

  • Zhang, Z. et al. The 1 PW/0.1 Hz laser beamline in SULF facility. High. Power Laser Sci. Eng. 8, e4 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Shrock, J. E. et al. Guided mode evolution and ionization injection in meter-scale multi-GeV laser wakefield accelerators. Phys. Rev. Lett. 133, 045002 (2024).

    Article 

    Google Scholar
     

  • Calvin, L. et al. Laser-driven muon production for material inspection and imaging. Front. Phys. 11, 1177486 (2023).

    Article 

    Google Scholar
     

  • Tanaka, K. A. et al. Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76, 013507 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Morháč, M. et al. Efficient one- and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition. Nucl. Instrum. Methods Phys. Res., Sect. A 401, 385–408 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Du, P., Kibbe, W. A. & Lin, S. M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22, 2059–2065 (2006).

    Article 

    Google Scholar
     

  • Zhang F. et al. Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser. figshare https://doi.org/10.6084/m9.figshare.28329446 (2025).