• Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, J.-X. et al. Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. CsV3Sb5: A \({{\mathbb{Z}}}_{2}\) topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Unidirectional coherent quasiparticles in the high-temperature rotational symmetry broken phase of AV3Sb5 kagome superconductors. Nat. Phys. 19, 637–643 (2023).

    CAS 

    Google Scholar
     

  • Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing, Y. et al. Optical manipulation of the charge-density-wave state in RbV3Sb5. Nature 631, 60–66 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, L. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. arXiv2107.10714 (2021).

  • Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Three-state nematicity and magneto-optical kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. No observation of chiral flux current in the topological kagome metal CsV3Sb5. Phys. Rev. B 105, 045102 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Saykin, D. R. et al. High resolution polar kerr effect studies of CsV3Sb5: Tests for time-reversal symmetry breaking below the charge-order transition. Phys. Rev. Lett. 131, 016901 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. J. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys.: Condens. Matter 33, 235801 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Shan, Z. et al. Muon spin relaxation study of the layered kagome superconductor CsV3Sb5. Phys. Rev. Res. 4, 033145 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, C. et al. Correlated order at the tipping point in the kagome metal CsV3Sb5. Nat. Phys. 20, 579–584 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and landau theory. Phys. Rev. B 104, 035142 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A = K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feng, X., Zhang, Y., Jiang, K. & Hu, J. Low-energy effective theory and symmetry classification of flux phases on the kagome lattice. Phys. Rev. B 104, 165136 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, S. & Wang, Z. Chern fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagome superconductors. Nat. Commun. 13, 7288 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Loop currents in AV3Sb5 kagome metals: Multipolar and toroidal magnetic orders. Phys. Rev. B 106, 144504 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, eabl4108 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, J.-W., Wang, Z. & Zhou, S. Loop-current charge density wave driven by long-range coulomb repulsion on the kagomé lattice. Phys. Rev. B 107, 045127 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M. Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Varma, C. M. & Giamarchi, T. Strongly Interacting Fermions and High Tc Superconductivity (Proceedings of the Les Houches Summer School of Theoretical Physics, Les Houches, 1991, edited by B. Doucot and J. Zinn-Justin, Session LVI (Elsevier, 1995).

  • Varma, C. M. Non-fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shekhter, A. & Varma, C. M. Local magnetic moments due to loop currents in metals. Phys. Rev. B 106, 214419 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Rad, G. T. Magnetism, edited by H. Suhl (Academic Press, 2012).

  • Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements (2nd ed.) (Elsevier, 1985).

  • Modic, K. A. et al. Scale-invariant magnetic anisotropy in RuCl3 at high magnetic fields. Nat. Phys. 17, 240–244 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shekhter, A., McDonald, R. D., Ramshaw, B. J. & Modic, K. A. Magnetotropic susceptibility. Phys. Rev. B 108, 035111 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Anomalous thermoelectric effects and quantum oscillations in the kagome metal CsV3Sb5. Phys. Rev. B 105, L201109 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tazai, R., Yamakawa, Y. & Kontani, H. Drastic magnetic-field-induced chiral current order and emergent current-bond-field interplay in kagome metals. Proc. Natl Acad. Sci. 121, e2303476121 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Stahl, Q. et al. Temperature-driven reorganization of electronic order in CsV3Sb5. Phys. Rev. B 105, 195136 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grandi, F., Consiglio, A., Sentef, M. A., Thomale, R. & Kennes, D. M. Theory of nematic charge orders in kagome metals. Phys. Rev. B 107, 155131 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gruner, G. Density Waves in Solids ((Addison-Wesley, 1994).

  • Asaba, T. et al. Evidence for an odd-parity nematic phase above the charge-density-wave transition in a kagome metal. Nat. Phys. 20, 40–46 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liège, W. et al. Search for orbital magnetism in the kagome superconductor CsV3Sb5 using neutron diffraction. Phys. Rev. B 110, 195109 (2024).

    Article 

    Google Scholar
     

  • Akiyama, T. et al. Implementation and characterization of a quartz tuning fork based probe consisted of discrete resonators for dynamic mode atomic force microscopy. Rev. Sci. Instrum. 81, 063706 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar