• Shin, Y. C. et al. Phononic band gap of a quarter-wave stack for enhanced piezoelectric energy harvesting. Int. J. Mech. Sci. 189, 106003. https://doi.org/10.1016/j.ijmecsci.2020.106003 (2021).

    Article 

    Google Scholar
     

  • Zaky, Z. A., Mohaseb, M. & Aly, A. H. Detection of hazardous greenhouse gases and chemicals with topological edge state using periodically arranged cross-sections. Phys. Scr. 98, 065002. https://doi.org/10.1088/1402-4896/accedc (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aliev, G. N. & Goller, B. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation. J. Appl. Phys. https://doi.org/10.1063/1.4894620 (2014).

    Article 

    Google Scholar
     

  • Zaky, Z. A. et al. Theoretical optimization of Tamm plasmon polariton structure for pressure sensing applications. Opt. Quant. Electron. 55, 738. https://doi.org/10.1007/s11082-023-05023-0 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zaky, Z. A. et al. Theoretical analysis of porous silicon one-dimensional photonic crystal doped with magnetized cold plasma for hazardous gases sensing applications. Opt. Quant. Electron. 55, 584. https://doi.org/10.1007/s11082-023-04907-5 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zaky, Z. A., Zhaketov, V., Sallah, M. & Aly, A. H. Using periodic multilayers of ferromagnetic and paramagnetic layers as neutron filter: simulation study. Plasmonics https://doi.org/10.1007/s11468-024-02533-9 (2024).

    Article 

    Google Scholar
     

  • Zaky, Z. A., Al-Dossari, M., Zhaketov, V. & Aly, A. H. Defected photonic crystal as propylene glycol THz sensor using parity-time symmetry. Sci. Rep. 14, 23209. https://doi.org/10.1038/s41598-024-73477-7 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J., Hu, G., Tang, L., Zhang, Y. & Yan, R. Modeling and analysis of phononic crystal with coupled lanes for enhanced elastic wave attenuation. J. Vib. Acoustics https://doi.org/10.1115/1.4048394 (2021).

    Article 

    Google Scholar
     

  • Wu, T.-T., Huang, Z.-G., Tsai, T.-C. & Wu, T.-C. Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl. Phys. Letters https://doi.org/10.1063/1.2970992 (2008).

    Article 

    Google Scholar
     

  • Antraoui, I. & Khettabi, A. Properties of defect modes in a finite periodic structure with branched open resonators. Mater. Today: Proc. 27, 3132–3138. https://doi.org/10.1016/j.matpr.2020.04.012 (2020).

    Article 

    Google Scholar
     

  • El Malki, M., Khettabi, A., Sallah, M. & Zaky, Z. A. Noise filter using a periodic system of dual Helmholtz resonators. Sci. Rep. 14, 24987. https://doi.org/10.1038/s41598-024-74799-2 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ameen, A. A., Al-Dossari, M., Zaky, Z. A. & Aly, A. H. Studying the effect of quantum dots and parity-time symmetry on the magnification of topological edge state peak as a pressure sensor. Synth. Met. 292, 117233. https://doi.org/10.1016/j.synthmet.2022.117233 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Al-Dossari, M., Zaky, Z. A., Awasthi, S. K., Amer, H. A. & Aly, A. H. Detection of glucose concentrations in urine based on coupling of Tamm-Fano resonance in photonic crystals. Opt. Quant. Electron. 55, 484. https://doi.org/10.1007/s11082-023-04621-2 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Antraoui, I. & Khettabi, A. Study of the defect modes of a finite one-dimensional periodic structure of three different waveguides. Mater. Today: Proc. 31, S61–S68. https://doi.org/10.1016/j.matpr.2020.06.064 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. G. et al. Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. J. Appl. Phys. https://doi.org/10.1063/1.2894914 (2008).

    Article 

    Google Scholar
     

  • Nayak, C., Solaimani, M., Aghajamali, A. & Aly, A. H. Acoustic wave frequency filtering in constant total length phononic crystals of Al/Pb multilayer. International Journal of Modern Physics B 35(29), 2150300 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, J., Yu, D., Wen, J. & Zhang, Z. Analysis of an ultra-low frequency and ultra-broadband phononic crystals silencer with small size. J. Theor. Comp. Acoust. 27, 1850026. https://doi.org/10.1142/S2591728518500263 (2019).

    Article 

    Google Scholar
     

  • Zaky, Z. A., Al-Dossari, M., Sharma, A. & Aly, A. H. Effective pressure sensor using the parity-time symmetric photonic crystal. Phys. Scr. 98, 035522. https://doi.org/10.1088/1402-4896/acbcae (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaky, Z. A. et al. Photonic crystal with magnified resonant peak for biosensing applications. Phys. Scr. 98, 055108. https://doi.org/10.1088/1402-4896/accbf1 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Antraoui, I., Khettabi, A., Sallah, M. & Zaky, Z. A. Analysis of the defect mode features in an asymmetric and symmetric acoustic system using expansion chambers. Sci. Rep. 15, 2546. https://doi.org/10.1038/s41598-024-85002-x (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antraoui, I., Sallah, M. & Zaky, A. Z. Localized modes and acoustic band gaps using different quasi-periodic structures based on closed and open resonators. Sci. Rep. 15, 7633. https://doi.org/10.1038/s41598-025-90691-z (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaky, Z. A. et al. Coupling between topological edge state and defect mode-based biosensor using phononic crystal. Sci. Rep. 15, 2216. https://doi.org/10.1038/s41598-025-85195-9 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, N. B. et al. Tunable multi-band-stop filters using generalized fibonacci photonic crystals for optical communication applications. Mathematics 10, 1240. https://doi.org/10.3390/math10081240 (2022).

    Article 

    Google Scholar
     

  • Hui, X. & Yu, C. Photonic bandgap structure and long-range periodicity of a cumulative Fibonacci lattice. Photonics Res. 5, 11–14. https://doi.org/10.1364/PRJ.5.000011 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zaky, Z.A., et al. Properties of localized modes and acoustic band gaps using serial closed resonators in generalized Thue Morse quasi periodic sequences. Opt Quant Electron 57, 273 (2025).

  • Albuquerque, E. L. & Cottam, M. G. Theory of elementary excitations in quasiperiodic structures. Phys. Rep. 376, 225–337. https://doi.org/10.1016/S0370-1573(02)00559-8 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xue, F. et al. The theoretical analysis of omnidirectional photonic band gaps in the one-dimensional ternary plasma photonic crystals based on Pell quasi-periodic structure. Opt. Quant. Electron. 49, 1–13. https://doi.org/10.1007/s11082-016-0762-0 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Trabelsi, Y., Benali, N., Bouazzi, Y. & Kanzari, M. Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures. Photonic Sensors 3, 246–255. https://doi.org/10.1007/s13320-013-0114-7 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaky, Z. A., Al-Dossari, M., Zohny, E. I. & Aly, A. H. Refractive index sensor using Fibonacci sequence of gyroidal graphene and porous silicon based on Tamm plasmon polariton. Opt. Quant. Electron. 55, 6. https://doi.org/10.1007/s11082-022-04262-x (2023).

    Article 
    CAS 

    Google Scholar
     

  • Segovia-Chaves, F., Vinck-Posada, H., Trabelsi, Y. & Ali, N. B. Transmittance spectrum in a one-dimensional photonic crystal with Fibonacci sequence superconductor–semiconductor. Optik 217, 164803. https://doi.org/10.1016/j.ijleo.2020.164803 (2020).

    Article 
    CAS 

    Google Scholar
     

  • I. Antraoui and A. Khettabi, “Acoustic Wave Propagation in a Quasi-Periodic Waveguide System Based on the Symmetric Fibonacci Sequence,” in 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2024, pp. 1–6. https://doi.org/10.1109/IRASET60544.2024.10549227

  • Trabelsi, Y., Ali, N. B. & Kanzari, M. Tunable narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals. Microelectron. Eng. 213, 41–46. https://doi.org/10.1016/j.mee.2019.04.016 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Segovia-Chaves, F., Vinck-Posada, H. & Gómez, E. A. Transmittance spectrum in a semiconductor-superconductor quasi-periodic Thue-Morse one-dimensional photonic crystal. Physica C: Superconductivity and its Applications 579, 1353768. https://doi.org/10.1016/j.physc.2020.1353768 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaky, Z. A., Al-Dossari, M., Hendy, A. S., Zayed, M. & Aly, A. H. Gamma radiation detector using Cantor quasi-periodic photonic crystal based on porous silicon doped with polymer. Int. J. Mod. Phys. B 38, 2450409. https://doi.org/10.1142/S0217979224504095 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H.-F., Hu, X.-C. & Ma, Y. Wide-angle and ultra-wideband absorption in one-dimensional superconductor photonic crystals with quasi-periodic sequences. IEEE Access 7, 164286–164293. https://doi.org/10.1109/ACCESS.2019.2952777 (2019).

    Article 

    Google Scholar
     

  • Zaky, Z. A., Al-Dossari, M., Matar, Z. & Aly, A. H. Effect of geometrical and physical properties of cantor structure for gas sensing applications. Synth. Met. 291, 117167. https://doi.org/10.1016/j.synthmet.2022.117167 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Augustyniak, A., Zdanowicz, M. & Osuch, T. Self-Similarity Properties of Complex Quasi-Periodic Fibonacci and Cantor Photonic Crystals. In Photonics https://doi.org/10.3390/photonics8120558 (2021).

    Article 

    Google Scholar
     

  • King, P. & Cox, T. Acoustic band gaps in periodically and quasiperiodically modulated waveguides. J. Appl. Phys. https://doi.org/10.1063/1.2749483 (2007).

    Article 

    Google Scholar
     

  • Farhat, A., Morini, L. & Gei, M. Silver-mean canonical quasicrystalline-generated phononic waveguides. J. Sound Vib. 523, 116679. https://doi.org/10.1016/j.jsv.2021.116679 (2022).

    Article 

    Google Scholar
     

  • Zhao, J., Huo, S., Huang, H. & Chen, J. Topological Interface states of shear horizontal guided wave in one-dimensional phononic quasicrystal slabs. Phys. Status Soli. (RRL)-Rapid Research Letters https://doi.org/10.1002/pssr.201800322 (2018).

    Article 

    Google Scholar
     

  • A. H. Aly, A. Nagaty, and Z. Khalifa, Propagation of acoustic waves in 2D periodic and quasiperiodic phononic crystals.

  • I. Antraoui and A. Khettabi, “Defect modes in one-dimensional periodic closed resonators,” in Advances in Integrated Design and Production: Proceedings of the 11th International Conference on Integrated Design and Production, CPI 2019, October 14–16, 2019, Fez, Morocco 438–445. https://doi.org/10.1007/978-3-030-62199-5_39(2021).

  • Zaky, Z. A., Alamri, S., Zohny, E. I. & Aly, A. H. Simulation study of gas sensor using periodic phononic crystal tubes to detect hazardous greenhouse gases. Sci. Rep. 12, 21553. https://doi.org/10.1038/s41598-022-26079-0 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, P., Yariv, A. & Hong, C.-S. Electromagnetic propagation in periodic stratified media. I. General theory. J. Optical Soc. Am. B 67, 423–438. https://doi.org/10.1364/JOSA.67.000423 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Saenger, K. L. A pressure-based transfer matrix method and measurement technique for studying resonances in flutes and other open-input resonators. J. Acoustical Soc. Am. 147, 2556–2569. https://doi.org/10.1121/10.0001102 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pernas-Salomón, R., Pérez-Álvarez, R., Lazcano, Z. & Arriaga, J. The scattering matrix approach: a study of elastic waves propagation in one-dimensional disordered phononic crystals. J. Appl. Phys. https://doi.org/10.1063/1.4937589 (2015).

    Article 

    Google Scholar
     

  • Li, Y., Zhou, X., Bian, Z., Xing, Y. & Song, J. Thermal tuning of the interfacial adhesive layer on the band gaps in a one-dimensional phononic crystal. Compos. Struct. 172, 311–318. https://doi.org/10.1016/j.compstruct.2017.03.092 (2017).

    Article 

    Google Scholar
     

  • Jo, S.-H. & Youn, B. D. Designing a phononic crystal with a defect for target frequency matching using an analytical approach. Mech. Adv. Mater. Struct. 29, 2454–2467. https://doi.org/10.1080/15376494.2021.1953648 (2022).

    Article 

    Google Scholar
     

  • Aly, A. H., Nagaty, A. & Khalifa, Z. Piezoelectric material and one-dimensional phononic crystal. Surf. Rev. Lett. 26, 1850144. https://doi.org/10.1142/S0218625X18501445 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaky, Z. A., Al-Dossari, M., Hendy, A. S., Badawy, W. M. & Aly, A. H. Periodic open and closed resonators as a biosensor using two computational methods. Sci. Rep. 14, 11943. https://doi.org/10.1038/s41598-024-61987-3 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaky, Z. A., Al-Dossari, M., Sharma, A., Hendy, A. S. & Aly, A. H. Theoretical optimisation of a novel gas sensor using periodically closed resonators. Sci. Rep. 14, 2462. https://doi.org/10.1038/s41598-024-52851-5 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaky, Z. A., Mohaseb, M., Hendy, A. S. & Aly, A. H. Design of phononic crystal using open resonators as harmful gases sensor. Sci. Rep. 13, 9346. https://doi.org/10.1038/s41598-023-36216-y (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics: John wiley & sons, (2000).

  • F. M. White, Fluid mechanics, in SI units: McGraw-Hill, (2012).

  • Guo, R., Tang, W.-B. & Zhu, W.-W. Comparison of 1D transfer matrix method and finite element method with tests for acoustic performance of multi-chamber perforated resonator. Appl. Acoust. 112, 140–146. https://doi.org/10.1016/j.apacoust.2016.05.018 (2016).

    Article 

    Google Scholar
     

  • El Chami, Y., Pezeshki, Z., Mohamed, S. S. & Safaei, B. Enhanced acoustic attenuation performance of a novel absorptive muffler: A Helmholtz equation-based simulation study. J. Eng. Manag. Syst. Eng 3, 53–64. https://doi.org/10.56578/jemse030105 (2024).

    Article 

    Google Scholar
     

  • Acoustic–Structure Interaction [Online]. Available: https://www.comsol.com/model/acousticstructure-interaction-417

  • Huang, L. et al. Sound trapping in an open resonator. Nat. Commun. 12, 4819. https://doi.org/10.1038/s41467-021-25130-4 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hein, S., Hohage, T. & Koch, W. On resonances in open systems. J. Fluid Mech. 506, 255–284. https://doi.org/10.1017/S0022112004008584 (2004).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zaghdoudi, J., Maaloul, N. & Kanzari, M. Studies of optical properties of symmetrical quasi-periodic photonic crystals. Opt. Photon. J. 2, 270–277. https://doi.org/10.4236/opj.2012.24033 (2012).

    Article 
    CAS 

    Google Scholar
     

  • I. Antraoui, M. El Malki, and A. Khettabi, “Noise reduction through a waveguide structure consisting of expansion chambers with a geometrical defect,” in E3S Web of Conferences, 02002. https://doi.org/10.1051/e3sconf/202452702002 (2024).

  • Serra, Q., Ichchou, M. & Deü, J.-F. On the use of transfer approaches to predict the vibroacoustic response of poroelastic media. J. Comput. Acoust. 24, 1550020. https://doi.org/10.1142/S0218396X15500204 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hong, J., Huang, W. & Makino, T. On the transfer matrix method for distributed-feedback waveguide devices. J. Lightwave Technol. 10, 1860–1868. https://doi.org/10.1109/50.202840 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Heubeck, B. & Pflaum, C. A new simulation technique for DFB lasers. In Semiconductor Lasers and Laser Dynamics III https://doi.org/10.1117/12.779290 (2008).

    Article 

    Google Scholar
     

  • Tajic, A., Volatier, A., Aigner, R. & Solal, M. “Simulation of solidly mounted BAW resonators using FEM combined with BEM and/or PML,” in. IEEE Intl. Ultrasonics Symposium 2010, 181–184. https://doi.org/10.1109/ULTSYM.2010.5935769 (2010).

    Article 

    Google Scholar
     

  • Greenwood, A. D. Finite element method for electromagnetic scattering and radiation from complex axisymmetric structures (University of Illinois at Urbana-Champaign, 1998).


    Google Scholar
     

  • Bardi, I., Remski, R., Perry, D. & Cendes, Z. Plane wave scattering from frequency-selective surfaces by the finite-element method. IEEE Trans. Magn. 38, 641–644 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Verdière, K., Panneton, R., Elkoun, S., Dupont, T. & Leclaire, P. Transfer matrix method applied to the parallel assembly of sound absorbing materials. J. Acoustical Soc. Am. 134, 4648–4658. https://doi.org/10.1121/1.4824839 (2013).

    Article 
    ADS 

    Google Scholar