Shin, Y. C. et al. Phononic band gap of a quarter-wave stack for enhanced piezoelectric energy harvesting. Int. J. Mech. Sci. 189, 106003. https://doi.org/10.1016/j.ijmecsci.2020.106003 (2021).
Zaky, Z. A., Mohaseb, M. & Aly, A. H. Detection of hazardous greenhouse gases and chemicals with topological edge state using periodically arranged cross-sections. Phys. Scr. 98, 065002. https://doi.org/10.1088/1402-4896/accedc (2023).
Aliev, G. N. & Goller, B. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation. J. Appl. Phys. https://doi.org/10.1063/1.4894620 (2014).
Zaky, Z. A. et al. Theoretical optimization of Tamm plasmon polariton structure for pressure sensing applications. Opt. Quant. Electron. 55, 738. https://doi.org/10.1007/s11082-023-05023-0 (2023).
Zaky, Z. A. et al. Theoretical analysis of porous silicon one-dimensional photonic crystal doped with magnetized cold plasma for hazardous gases sensing applications. Opt. Quant. Electron. 55, 584. https://doi.org/10.1007/s11082-023-04907-5 (2023).
Zaky, Z. A., Zhaketov, V., Sallah, M. & Aly, A. H. Using periodic multilayers of ferromagnetic and paramagnetic layers as neutron filter: simulation study. Plasmonics https://doi.org/10.1007/s11468-024-02533-9 (2024).
Zaky, Z. A., Al-Dossari, M., Zhaketov, V. & Aly, A. H. Defected photonic crystal as propylene glycol THz sensor using parity-time symmetry. Sci. Rep. 14, 23209. https://doi.org/10.1038/s41598-024-73477-7 (2024).
Xu, J., Hu, G., Tang, L., Zhang, Y. & Yan, R. Modeling and analysis of phononic crystal with coupled lanes for enhanced elastic wave attenuation. J. Vib. Acoustics https://doi.org/10.1115/1.4048394 (2021).
Wu, T.-T., Huang, Z.-G., Tsai, T.-C. & Wu, T.-C. Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl. Phys. Letters https://doi.org/10.1063/1.2970992 (2008).
Antraoui, I. & Khettabi, A. Properties of defect modes in a finite periodic structure with branched open resonators. Mater. Today: Proc. 27, 3132–3138. https://doi.org/10.1016/j.matpr.2020.04.012 (2020).
El Malki, M., Khettabi, A., Sallah, M. & Zaky, Z. A. Noise filter using a periodic system of dual Helmholtz resonators. Sci. Rep. 14, 24987. https://doi.org/10.1038/s41598-024-74799-2 (2024).
Ameen, A. A., Al-Dossari, M., Zaky, Z. A. & Aly, A. H. Studying the effect of quantum dots and parity-time symmetry on the magnification of topological edge state peak as a pressure sensor. Synth. Met. 292, 117233. https://doi.org/10.1016/j.synthmet.2022.117233 (2023).
Al-Dossari, M., Zaky, Z. A., Awasthi, S. K., Amer, H. A. & Aly, A. H. Detection of glucose concentrations in urine based on coupling of Tamm-Fano resonance in photonic crystals. Opt. Quant. Electron. 55, 484. https://doi.org/10.1007/s11082-023-04621-2 (2023).
Antraoui, I. & Khettabi, A. Study of the defect modes of a finite one-dimensional periodic structure of three different waveguides. Mater. Today: Proc. 31, S61–S68. https://doi.org/10.1016/j.matpr.2020.06.064 (2020).
Wang, Z. G. et al. Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. J. Appl. Phys. https://doi.org/10.1063/1.2894914 (2008).
Nayak, C., Solaimani, M., Aghajamali, A. & Aly, A. H. Acoustic wave frequency filtering in constant total length phononic crystals of Al/Pb multilayer. International Journal of Modern Physics B 35(29), 2150300 (2021).
Liu, J., Yu, D., Wen, J. & Zhang, Z. Analysis of an ultra-low frequency and ultra-broadband phononic crystals silencer with small size. J. Theor. Comp. Acoust. 27, 1850026. https://doi.org/10.1142/S2591728518500263 (2019).
Zaky, Z. A., Al-Dossari, M., Sharma, A. & Aly, A. H. Effective pressure sensor using the parity-time symmetric photonic crystal. Phys. Scr. 98, 035522. https://doi.org/10.1088/1402-4896/acbcae (2023).
Zaky, Z. A. et al. Photonic crystal with magnified resonant peak for biosensing applications. Phys. Scr. 98, 055108. https://doi.org/10.1088/1402-4896/accbf1 (2023).
Antraoui, I., Khettabi, A., Sallah, M. & Zaky, Z. A. Analysis of the defect mode features in an asymmetric and symmetric acoustic system using expansion chambers. Sci. Rep. 15, 2546. https://doi.org/10.1038/s41598-024-85002-x (2025).
Antraoui, I., Sallah, M. & Zaky, A. Z. Localized modes and acoustic band gaps using different quasi-periodic structures based on closed and open resonators. Sci. Rep. 15, 7633. https://doi.org/10.1038/s41598-025-90691-z (2025).
Zaky, Z. A. et al. Coupling between topological edge state and defect mode-based biosensor using phononic crystal. Sci. Rep. 15, 2216. https://doi.org/10.1038/s41598-025-85195-9 (2025).
Ali, N. B. et al. Tunable multi-band-stop filters using generalized fibonacci photonic crystals for optical communication applications. Mathematics 10, 1240. https://doi.org/10.3390/math10081240 (2022).
Hui, X. & Yu, C. Photonic bandgap structure and long-range periodicity of a cumulative Fibonacci lattice. Photonics Res. 5, 11–14. https://doi.org/10.1364/PRJ.5.000011 (2016).
Zaky, Z.A., et al. Properties of localized modes and acoustic band gaps using serial closed resonators in generalized Thue Morse quasi periodic sequences. Opt Quant Electron 57, 273 (2025).
Albuquerque, E. L. & Cottam, M. G. Theory of elementary excitations in quasiperiodic structures. Phys. Rep. 376, 225–337. https://doi.org/10.1016/S0370-1573(02)00559-8 (2003).
Xue, F. et al. The theoretical analysis of omnidirectional photonic band gaps in the one-dimensional ternary plasma photonic crystals based on Pell quasi-periodic structure. Opt. Quant. Electron. 49, 1–13. https://doi.org/10.1007/s11082-016-0762-0 (2017).
Trabelsi, Y., Benali, N., Bouazzi, Y. & Kanzari, M. Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures. Photonic Sensors 3, 246–255. https://doi.org/10.1007/s13320-013-0114-7 (2013).
Zaky, Z. A., Al-Dossari, M., Zohny, E. I. & Aly, A. H. Refractive index sensor using Fibonacci sequence of gyroidal graphene and porous silicon based on Tamm plasmon polariton. Opt. Quant. Electron. 55, 6. https://doi.org/10.1007/s11082-022-04262-x (2023).
Segovia-Chaves, F., Vinck-Posada, H., Trabelsi, Y. & Ali, N. B. Transmittance spectrum in a one-dimensional photonic crystal with Fibonacci sequence superconductor–semiconductor. Optik 217, 164803. https://doi.org/10.1016/j.ijleo.2020.164803 (2020).
I. Antraoui and A. Khettabi, “Acoustic Wave Propagation in a Quasi-Periodic Waveguide System Based on the Symmetric Fibonacci Sequence,” in 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2024, pp. 1–6. https://doi.org/10.1109/IRASET60544.2024.10549227
Trabelsi, Y., Ali, N. B. & Kanzari, M. Tunable narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals. Microelectron. Eng. 213, 41–46. https://doi.org/10.1016/j.mee.2019.04.016 (2019).
Segovia-Chaves, F., Vinck-Posada, H. & Gómez, E. A. Transmittance spectrum in a semiconductor-superconductor quasi-periodic Thue-Morse one-dimensional photonic crystal. Physica C: Superconductivity and its Applications 579, 1353768. https://doi.org/10.1016/j.physc.2020.1353768 (2020).
Zaky, Z. A., Al-Dossari, M., Hendy, A. S., Zayed, M. & Aly, A. H. Gamma radiation detector using Cantor quasi-periodic photonic crystal based on porous silicon doped with polymer. Int. J. Mod. Phys. B 38, 2450409. https://doi.org/10.1142/S0217979224504095 (2024).
Zhang, H.-F., Hu, X.-C. & Ma, Y. Wide-angle and ultra-wideband absorption in one-dimensional superconductor photonic crystals with quasi-periodic sequences. IEEE Access 7, 164286–164293. https://doi.org/10.1109/ACCESS.2019.2952777 (2019).
Zaky, Z. A., Al-Dossari, M., Matar, Z. & Aly, A. H. Effect of geometrical and physical properties of cantor structure for gas sensing applications. Synth. Met. 291, 117167. https://doi.org/10.1016/j.synthmet.2022.117167 (2022).
Augustyniak, A., Zdanowicz, M. & Osuch, T. Self-Similarity Properties of Complex Quasi-Periodic Fibonacci and Cantor Photonic Crystals. In Photonics https://doi.org/10.3390/photonics8120558 (2021).
King, P. & Cox, T. Acoustic band gaps in periodically and quasiperiodically modulated waveguides. J. Appl. Phys. https://doi.org/10.1063/1.2749483 (2007).
Farhat, A., Morini, L. & Gei, M. Silver-mean canonical quasicrystalline-generated phononic waveguides. J. Sound Vib. 523, 116679. https://doi.org/10.1016/j.jsv.2021.116679 (2022).
Zhao, J., Huo, S., Huang, H. & Chen, J. Topological Interface states of shear horizontal guided wave in one-dimensional phononic quasicrystal slabs. Phys. Status Soli. (RRL)-Rapid Research Letters https://doi.org/10.1002/pssr.201800322 (2018).
A. H. Aly, A. Nagaty, and Z. Khalifa, Propagation of acoustic waves in 2D periodic and quasiperiodic phononic crystals.
I. Antraoui and A. Khettabi, “Defect modes in one-dimensional periodic closed resonators,” in Advances in Integrated Design and Production: Proceedings of the 11th International Conference on Integrated Design and Production, CPI 2019, October 14–16, 2019, Fez, Morocco 438–445. https://doi.org/10.1007/978-3-030-62199-5_39(2021).
Zaky, Z. A., Alamri, S., Zohny, E. I. & Aly, A. H. Simulation study of gas sensor using periodic phononic crystal tubes to detect hazardous greenhouse gases. Sci. Rep. 12, 21553. https://doi.org/10.1038/s41598-022-26079-0 (2022).
Yeh, P., Yariv, A. & Hong, C.-S. Electromagnetic propagation in periodic stratified media. I. General theory. J. Optical Soc. Am. B 67, 423–438. https://doi.org/10.1364/JOSA.67.000423 (1977).
Saenger, K. L. A pressure-based transfer matrix method and measurement technique for studying resonances in flutes and other open-input resonators. J. Acoustical Soc. Am. 147, 2556–2569. https://doi.org/10.1121/10.0001102 (2020).
Pernas-Salomón, R., Pérez-Álvarez, R., Lazcano, Z. & Arriaga, J. The scattering matrix approach: a study of elastic waves propagation in one-dimensional disordered phononic crystals. J. Appl. Phys. https://doi.org/10.1063/1.4937589 (2015).
Li, Y., Zhou, X., Bian, Z., Xing, Y. & Song, J. Thermal tuning of the interfacial adhesive layer on the band gaps in a one-dimensional phononic crystal. Compos. Struct. 172, 311–318. https://doi.org/10.1016/j.compstruct.2017.03.092 (2017).
Jo, S.-H. & Youn, B. D. Designing a phononic crystal with a defect for target frequency matching using an analytical approach. Mech. Adv. Mater. Struct. 29, 2454–2467. https://doi.org/10.1080/15376494.2021.1953648 (2022).
Aly, A. H., Nagaty, A. & Khalifa, Z. Piezoelectric material and one-dimensional phononic crystal. Surf. Rev. Lett. 26, 1850144. https://doi.org/10.1142/S0218625X18501445 (2019).
Zaky, Z. A., Al-Dossari, M., Hendy, A. S., Badawy, W. M. & Aly, A. H. Periodic open and closed resonators as a biosensor using two computational methods. Sci. Rep. 14, 11943. https://doi.org/10.1038/s41598-024-61987-3 (2024).
Zaky, Z. A., Al-Dossari, M., Sharma, A., Hendy, A. S. & Aly, A. H. Theoretical optimisation of a novel gas sensor using periodically closed resonators. Sci. Rep. 14, 2462. https://doi.org/10.1038/s41598-024-52851-5 (2024).
Zaky, Z. A., Mohaseb, M., Hendy, A. S. & Aly, A. H. Design of phononic crystal using open resonators as harmful gases sensor. Sci. Rep. 13, 9346. https://doi.org/10.1038/s41598-023-36216-y (2023).
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics: John wiley & sons, (2000).
F. M. White, Fluid mechanics, in SI units: McGraw-Hill, (2012).
Guo, R., Tang, W.-B. & Zhu, W.-W. Comparison of 1D transfer matrix method and finite element method with tests for acoustic performance of multi-chamber perforated resonator. Appl. Acoust. 112, 140–146. https://doi.org/10.1016/j.apacoust.2016.05.018 (2016).
El Chami, Y., Pezeshki, Z., Mohamed, S. S. & Safaei, B. Enhanced acoustic attenuation performance of a novel absorptive muffler: A Helmholtz equation-based simulation study. J. Eng. Manag. Syst. Eng 3, 53–64. https://doi.org/10.56578/jemse030105 (2024).
Acoustic–Structure Interaction [Online]. Available: https://www.comsol.com/model/acousticstructure-interaction-417
Huang, L. et al. Sound trapping in an open resonator. Nat. Commun. 12, 4819. https://doi.org/10.1038/s41467-021-25130-4 (2021).
Hein, S., Hohage, T. & Koch, W. On resonances in open systems. J. Fluid Mech. 506, 255–284. https://doi.org/10.1017/S0022112004008584 (2004).
Zaghdoudi, J., Maaloul, N. & Kanzari, M. Studies of optical properties of symmetrical quasi-periodic photonic crystals. Opt. Photon. J. 2, 270–277. https://doi.org/10.4236/opj.2012.24033 (2012).
I. Antraoui, M. El Malki, and A. Khettabi, “Noise reduction through a waveguide structure consisting of expansion chambers with a geometrical defect,” in E3S Web of Conferences, 02002. https://doi.org/10.1051/e3sconf/202452702002 (2024).
Serra, Q., Ichchou, M. & Deü, J.-F. On the use of transfer approaches to predict the vibroacoustic response of poroelastic media. J. Comput. Acoust. 24, 1550020. https://doi.org/10.1142/S0218396X15500204 (2016).
Hong, J., Huang, W. & Makino, T. On the transfer matrix method for distributed-feedback waveguide devices. J. Lightwave Technol. 10, 1860–1868. https://doi.org/10.1109/50.202840 (1992).
Heubeck, B. & Pflaum, C. A new simulation technique for DFB lasers. In Semiconductor Lasers and Laser Dynamics III https://doi.org/10.1117/12.779290 (2008).
Tajic, A., Volatier, A., Aigner, R. & Solal, M. “Simulation of solidly mounted BAW resonators using FEM combined with BEM and/or PML,” in. IEEE Intl. Ultrasonics Symposium 2010, 181–184. https://doi.org/10.1109/ULTSYM.2010.5935769 (2010).
Greenwood, A. D. Finite element method for electromagnetic scattering and radiation from complex axisymmetric structures (University of Illinois at Urbana-Champaign, 1998).
Bardi, I., Remski, R., Perry, D. & Cendes, Z. Plane wave scattering from frequency-selective surfaces by the finite-element method. IEEE Trans. Magn. 38, 641–644 (2002).
Verdière, K., Panneton, R., Elkoun, S., Dupont, T. & Leclaire, P. Transfer matrix method applied to the parallel assembly of sound absorbing materials. J. Acoustical Soc. Am. 134, 4648–4658. https://doi.org/10.1121/1.4824839 (2013).