Arias, P. A. et al. Technical Summary. In: Climate Change 2021 – The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.). 35–144. https://doi.org/10.1017/9781009157896.002 (Cambridge University Press, Cambridge, United Kingdom, 2021).
Fox-Kemper, B. et al. Cryosphere and Sea Level Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.). 1211–1362. https://doi.org/10.1017/9781009157896.011 (Cambridge University Press, Cambridge, United Kingdom, 2021).
Pörtner, H. O. et al. Technical Summary. In: Climate Change 2022 – Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.). 37–118. https://doi.org/10.1017/9781009325844.002 (Cambridge University Press, Cambridge, United Kingdom, 2022).
de Wit, C. A., Vorkamp, K. & Muir, D. Influence of climate change on persistent organic pollutants and chemicals of emerging concern in the Arctic: state of knowledge and recommendations for future research. Environ. Sci.-Process. Impacts 24, 1530–1543 (2022).
Noyes, P. D. et al. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 35, 971–986 (2009).
UNSC. Stockholm Convention on Persistent Organic Pollutants. Available at: https://www.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx. Last accessed 10/02/2024 (2024).
UNEP/AMAP. Climate Change and POPs: Predicting the Impacts. Report of the UNEP/AMAP Expert Group. Secretariat of the Stockholm Convention. Geneva. 62. Available at: https://www.amap.no/documents/doc/climate-change-and-pops-predicting-the-impacts/753. Last accessed 10-02-2024 (2011).
Dietz, R. et al. Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Sci. Total Environ. 696, 133792 (2019).
Jones, K. C. Persistent organic pollutants (POPs) and related chemicals in the global environment: some personal reflections. Environ. Sci. Technol. 55, 9400–9412 (2021).
Jones, K. C. & de Voogt, P. Persistent organic pollutants (POPs): state of the science. Environ. Pollut. 100, 209–221 (1999).
Lohmann, R., Breivik, K., Dachs, J. & Muir, D. Global fate of POPs: Current and future research directions. Environ. Pollut. 150, 150–165 (2007).
Muir, D. et al. Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment – An update. Emerg. Contam. 5, 240–271 (2019).
Wania, F. & Mackay, D. Modeling the global distribution of toxphene – a discussion of feasibility and desirability. Chemosphere 27, 2079–2094 (1993).
Wania, F. & Mackay, D. Tracking the distribution of persistent organic pollutants. Environ. Sci. Technol. 30, A390–A396 (1996).
Wania, F. & Mackay, D. Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22, 10–18 (1993).
Hop, H., Borgä, K., Gabrielsen, G. W., Kleivane, L. & Skaare, J. U. Food web magnification of persistent organic pollutants in poikilotherms and homeotherms from the Barents Sea. Environ. Sci. Technol. 36, 2589–2597 (2002).
Kelly, B. C., Ikonomou, M. G., Blair, J. D., Morin, A. E. & Gobas, F. A. P. C. Food web-specific biomagnification of persistent organic pollutants. Science 317, 236–239 (2007).
Jamieson, A. J., Malkocs, T., Piertney, S. B., Fujii, T. & Zhang, Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat. Ecol. Evol. 1, 0051 (2017).
Fischer, F. C. et al. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to Serum Proteins: Implications for Toxicokinetics in Humans. Environ. Sci. Technol. 58, 1055–1063 (2024).
AMAP. AMAP Assessment 2020: POPs and Chemicals of Emerging Arctic Concern: Influence of Climate Change Arctic Monitoring and Assessment Programme (AMAP). Tromsø, Norway. 134. Available at: https://www.amap.no/documents/doc/amap-assessment-2020-pops-and-chemicals-of-emerging-arctic-concern-influence-of-climate-change/3580. Last accessed 08-05-2024 (2021).
AMAP. AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP) Oslo, Norway. vi+71. Available at: https://www.amap.no/documents/doc/influence-of-climate-change-on-transport-levels-and-effects-of-contaminants-in-northern-areas-part-2/1561. Last accessed 08-05-2024 (2016).
AMAP. AMAP Assessment 2018: Biological Effects of Contaminants on Arctic Wildlife and Fish, Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway. vii+84. Available at: https://www.amap.no/documents/doc/amap-assessment-2018-biological-effects-of-contaminants-on-arctic-wildlife-and-fish/1663. Last Accessed 08-05-2024 (2018).
Armitage, J. M., Quinn, C. L. & Wania, F. Global climate change and contaminants-an overview of opportunities and priorities for modelling the potential implications for long-term human exposure to organic compounds in the Arctic. J. Environ. Monit. 13, 1532–1546 (2011).
Bartalini, A., Munoz-Amanz, J., Garcia-Alvarez, N., Fernandez, A. & Jimenez, B. Global PBDE contamination in cetaceans. A critical review. Environ. Pollut. 308, 119670 (2022).
Borgå, K. et al. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Environ. Sci.-Process. Impacts 24, 1544–1576 (2022).
Macdonald, R. W., Mackay, D., Li, Y. F. & Hickie, B. How will global climate change affect risks from long-range transport of persistent organic pollutants?. Hum. Ecol. Risk Assess. 9, 643–660 (2003).
Vorkamp, K. et al. Influences of climate change on long-term time series of persistent organic pollutants (POPs) in Arctic and Antarctic biota. Environ. Sci.-Process. Impacts 24, 1643–1660 (2022).
Bargagli, R. & Rota, E. Environmental contamination and climate change in Antarctic ecosystems: an updated overview. Environ. Sci.: Adv. 3, 543–560 (2024).
Corsolini, S. & Ademollo, N. POPs in Antarctic ecosystems: is climate change affecting their temporal trends?. Environ. Sci.-Process. Impacts 24, 1631–1642 (2022).
Casas, G. et al. Inputs, amplification and sinks of perfluoroalkyl substances at coastal Antarctica. Environ. Pollut. 338, 122608 (2023).
Hooper, M. J. et al. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ. Toxicol. Chem. 32, 32–48 (2013).
Moe, S. J. et al. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ. Toxicol. Chem. 32, 49–61 (2013).
Noyes, P. D. & Lema, S. C. Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Curr. Zool. 61, 669–689 (2015).
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
Holmstrup, M. et al. Interactions between effects of environmental chemicals and natural stressors: A review. Sci. Total Environ. 408, 3746–3762 (2010).
Grunst, A. S., Grunst, M. L. & Fort, J. Contaminant-by-environment interactive effects on animal behavior in the context of global change: Evidence from avian behavioral ecotoxicology. Sci. Total Environ. 879, 163169 (2023).
Hatje, V. et al. Emergent interactive effects of climate change and contaminants in coastal and ocean ecosystems. Front. Mar. Sci. 9, 1–8 (2022).
Pörtner, H. O., Langenbuch, M. & Michaelidis, B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res.-Oceans 110, C09S10 (2005).
Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).
Rohr, J. R., Salice, C. J. & Nisbet, R. M. The pros and cons of ecological risk assessment based on data from different levels of biological organization. Crit. Rev. Toxicol. 46, 756–784 (2016).
Van den Brink, P. J. et al. New approaches to the ecological risk assessment of multiple stressors. Mar. Freshw. Res. 67, 429–439 (2016).
Zhang, X. et al. Exploring global oceanic persistence and ecological effects of legacy persistent organic pollutants across five decades. Sci. Adv. 10, eado5534 (2024).
Suter, G. W. Developing conceptual models for complex ecological risk assessments. Hum. Ecol. Risk Assess. 5, 375–396 (1999).
Landis, W. G. et al. Ecological risk assessment in the context of global climate change. Environ. Toxicol. Chem. 32, 79–92 (2013).
Hung, H. et al. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment – a review. Environ. Sci.-Process. Impacts 24, 1577–1615 (2022).
Zhang, H. et al. Apparent relationships between anthropogenic factors and climate change indicators and POPs deposition in a lacustrine system. J. Environ. Sci. 83, 174–182 (2019).
Chai, L., Zhou, Y. & Wang, X. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. Environ. Sci.-Process. Impacts 24, 1616–1630 (2022).
Ma, J., Hung, H. & Macdonald, R. W. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor. Glob. Planet. Change 146, 89–108 (2016).
McKinney, M. A. et al. A review of ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems. Curr. Zool. 61, 617–628 (2015).
Rigét, F. et al. Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. Sci. Total Environ. 649, 99–110 (2019).
Bizzotto, E. C., Villa, S., Vaj, C. & Vighi, M. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt. Chemosphere 74, 924–930 (2009).
Bogdal, C. et al. Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding. Environ. Sci. Technol. 44, 4063–4069 (2010).
Bogdal, C. et al. Blast from the past: Melting Glaciers as a relevant source for persistent organic pollutants. Environ. Sci. Technol. 43, 8173–8177 (2009).
Cao, X. et al. Source emissions and climate change impacts on the multimedia transport and fate of persistent organic pollutants, Chaohu watershed, eastern China. J. Environ. Sci. 109, 15–25 (2021).
Kong, D., MacLeod, M. & Cousins, I. T. Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the POPCYCLING-Baltic model. Chemosphere 110, 31–40 (2014).
Li, J. et al. Evidence for persistent organic pollutants released from melting glacier in the central Tibetan Plateau, China. Environ. Pollut. 220, 178–185 (2017).
Miner, K. R. et al. Organochlorine pollutants within a polythermal glacier in the interior Eastern Alaska Range. Water 10, 1157 (2018).
Sharma, B. M. et al. Melting Himalayan glaciers contaminated by legacy atmospheric depositions are important sources of PCBs and high-molecular-weight PAHs for the Ganges floodplain during dry periods. Environ. Pollut. 206, 588–596 (2015).
Sun, Y., Yuan, G.-L., Li, J., Tang, J. & Wang, G.-H. High-resolution sedimentary records of some organochlorine pesticides in Yamzho Yumco Lake of the Tibetan Plateau: Concentration and composition. Sci. Total Environ. 615, 469–475 (2018).
Wu, X. et al. Understanding and predicting the fate of semivolatile organic pesticides in a glacier-fed lake using a multimedia chemical fate model. Environ. Sci. Technol. 51, 11752–11760 (2017).
Becker, S. et al. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere. Atmos. Chem. Phys. 12, 4033–4044 (2012).
Bidleman, T. et al. Atmospheric pathways of chlorinated pesticides and natural bromoanisoles in the northern Baltic Sea and its catchment. Ambio 44, S472–S483 (2015).
Guzzella, L. et al. and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?. Sci. Total Environ. 544, 382–390 (2016).
Li, M. et al. The atmospheric travel distance of persistent organic pollutants-revisit and application in climate change impact on long-rang transport potential. Atmos. Res. 255, 105558 (2021).
Ma, J. M., Hung, H. & Blanchard, P. How do climate fluctuations affect persistent organic pollutant distribution in North America? Evidence from a decade of air monitoring. Environ. Sci. Technol. 38, 2538–2543 (2004).
Ren, J., Wang, X., Gong, P. & Wang, C. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: seasonal shift and impact of global warming. Environ. Sci. Technol. 53, 3589–3598 (2019).
Tian, C. et al. Assessing and forecasting atmospheric outflow of α-HCH from China on Intra-, Inter-, and Decadal Time Scales. Environ. Sci. Technol. 46, 2220–2227 (2012).
Andersson, I., Parkman, H. & Jernelov, A. The role of sediments as sink or source for environmental contaminants: a case study of mercury and chlorinated organic compunds. Limnologica 20, 347–360 (1990).
Cheng, H. et al. DDTs and HCHs in sediment cores from the Tibetan Plateau. Chemosphere 94, 183–189 (2014).
Ding, Y. et al. Do dissipation and transformation of γ-HCH and p,p’-DDT in soil respond to a proxy for climate change? Insights from a field study on the eastern Tibetan Plateau. Environ. Pollut. 278, 116824 (2021).
Schmid, P. et al. The missing piece: Sediment records in remote mountain lakes confirm glaciers being secondary sources of persistent organic pollutants. Environ. Sci. Technol. 45, 203–208 (2011).
Soubaneh, Y. D. et al. Sorption behaviors of a persistent toxaphene congener on marine sediments under different physicochemical conditions. Chemosphere 114, 310–316 (2014).
Wu, J. Soil-air partition coefficients of persistent organic pollutants decline from climate warming: a case study in Yantai County, Shandong Province, China. Water Air Soil Pollut. 231, 371 (2020).
Zhao, Y. et al. Feature extraction of climate variability, seasonality, and long-term change signals in persistent organic pollutants over the Arctic and the Great Lakes. J. Geophys. Res.-Atmos. 122, 8921–8939 (2017).
Ademollo, N. et al. Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway): Environmental contamination, seasonal trend and climate change. Mar. Pollut. Bull. 163, 111900 (2021).
Garnett, J. et al. Investigating the uptake and fate of Poly- and Perfluoroalkylated Substances (PFAS) in sea ice using an experimental sea ice chamber. Environ. Sci. Technol. 55, 9601–9608 (2021).
Garnett, J. et al. High Concentrations of Perfluoroalkyl acids in arctic seawater driven by early thawing sea ice. Environ. Sci. Technol. 55, 11049–11059 (2021).
Veillette, J. et al. Perfluorinated chemicals in meromictic lakes on the Northern Coast of Ellesmere Island, High Arctic Canada. Arctic 65, 245–256 (2012).
MacInnis, J. J., Lehnherr, I., Muir, D. C. G., Quinlan, R. & De Silva, A. O. Characterization of perfluoroalkyl substances in sediment cores from High and Low Arctic lakes in Canada. Sci. Total Environ. 666, 414–422 (2019).
McGovern, M. et al. Is glacial meltwater a secondary source of legacy contaminants to Arctic Coastal Food Webs?. Environ. Sci. Technol. 56, 6337–6348 (2022).
Woehrnschimmel, H., MacLeod, M. & Hungerbuhler, K. Emissions, fate and transport of persistent organic pollutants to the arctic in a changing global climate. Environ. Sci. Technol. 47, 2323–2330 (2013).
Schwanen, C. A., Mueller, J., Schulte, P. & Schwarzbauer, J. Distribution, remobilization and accumulation of organic contaminants by flood events in a meso-scaled catchment system. Environ. Sci. Eur. 35, 15 (2023).
Wang, X., Sun, D. & Yao, T. Climate change and global cycling of persistent organic pollutants: A critical review. Sci. China-Earth Sci. 59, 1899–1911 (2016).
Eckhardt, S., Breivik, K., Mano, S. & Stohl, A. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions. Atmos. Chem. Phys. 7, 4527–4536 (2007).
Miranda, D.dA., Leonel, J., Benskin, J. P., Johansson, J. & Hatje, V. Perfluoroalkyl substances in the Western Tropical Atlantic Ocean. Environ. Sci. Technol. 55, 13749–13758 (2021).
Kobusinska, M. E. et al. Precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans in Arctic and Antarctic marine sediments: Environmental concern in the face of climate change. Chemosphere 260, 127605 (2020).
Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).
Anzano, J. et al. A review of atmospheric aerosols in Antarctica: From characterization to data processing. Atmosphere 13, 1621 (2022).
Potapowicz, J., Lambropoulou, D., Nannou, C., Koziol, K. & Polkowska, Z. Occurrences, sources, and transport of organochlorine pesticides in the aquatic environment of Antarctica. Sci. Total Environ. 735, 139475 (2020).
Wania, F. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environ. Sci. Technol. 37, 1344–1351 (2003).
Weber, K. & Goerke, H. Persistent organic pollutants (POPs) in antarctic fish: levels, patterns, changes. Chemosphere 53, 667–678 (2003).
Idriss, A. A., Gao, Y. Z., Bizimana, A. & Meng, X. Z. Persistent organic pollutants in polar ecosystems: current situation and future challenges under climate change. Int. J. Sci. Adv. 2, 295–307 (2021).
Galbán-Malagón, C. et al. Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) levels in air and surface sea waters along the Antarctic Peninsula. Mar. Pollut. Bull. 197, 115699 (2023).
Kakareka, S. & Kukharchyk, T. Inventory of unintentional POPs emission from anthropogenic sources in Antarctica. Advances in Polar. Science 33, 156–166 (2022).
Sun, L. G., Yin, X. B., Pan, C. P. & Wang, Y. H. A 50-years record of dichloro-diphenyl-trichloroethanes and hexachlorocyclohexanes in lake sediments and penguin droppings on King George Island, Maritime Antarctic. J. Environ. Sci. 17, 899–905 (2005).
Cincinelli, A. et al. Trematomus bernacchii as an indicator of POP temporal trend in the Antarctic seawaters. Environ. Pollut. 217, 19–25 (2016).
Luarte, T. et al. Occurrence and diffusive air-seawater exchanges of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Fildes Bay, King George Island, Antarctica. Sci. Total Environ. 908, 168323 (2024).
Cabrerizo, A., Dachs, J., Barceló, D. & Jones, K. C. Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica. Environ. Sci. Technol. 47, 4299–4306 (2013).
Cagnazzi, D., Harrison, P. L., Parra, G. J., Reichelt-Brushett, A. & Marsili, L. Geographic and temporal variation in persistent pollutants in Australian humpback and snubfin dolphins. Ecol. Indic. 111, 105990 (2020).
Ripszám, M. et al. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms. Sci. Total Environ. 517, 10–21 (2015).
Smit, M. P. J., Grotenhuis, T., Bruning, H. & Rulkens, W. H. Desorption of dieldrin from field aged sediments: Simulating flood events. J. Soils Sediment. 8, 80–85 (2008).
Wagner, C. C. et al. A Global 3-D Ocean Model for PCBs: Benchmark compounds for understanding the impacts of global change on neutral persistent organic pollutants. Glob. Biogeochem. Cycles 33, 469–481 (2019).
Daewel, U., Yakushev, E. V., Schrum, C., Nizzetto, L. & Mikheeva, E. Understanding the role of organic matter cycling for the spatio-temporal structure of PCBs in the North Sea. Water 12, 817 (2020).
Chi, K. H. et al. Evaluation of environmental fate and sinks of PCDD/Fs during specific extreme weather events in Taiwan. J. Asian Earth Sci. 77, 268–280 (2013).
van den Berg, H., Manuweera, G. & Konradsen, F. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malar. J. 16, 401 (2017).
Lu, Y. et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 239, 670–680 (2018).
Su, C. et al. Potential effects of changes in climate and emissions on distribution and fate of perfluorooctane sulfonate in the Bohai Rim, China. Sci. Total Environ. 613, 352–360 (2018).
Zhao, Z. et al. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast. Environ. Pollut. 170, 71–77 (2012).
Foster, K. L., Braune, B. M., Gaston, A. J. & Mallory, M. L. Climate influence on legacy organochlorine pollutants in Arctic Seabirds. Environ. Sci. Technol. 53, 2518–2528 (2019).
Becker, S. et al. Long-term trends in atmospheric concentrations of α- and γ-HCH in the Arctic provide insight into the effects of legislation and climatic fluctuations on contaminant levels. Atmos. Environ. 42, 8225–8233 (2008).
Delworth, T. L. et al. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 9, 509–512 (2016).
Deser, C., Hurrell, J. W. & Phillips, A. S. The role of the North Atlantic Oscillation in European climate projections. Clim. Dyn. 49, 3141–3157 (2017).
Gillett, N. P., Graf, H. F. & Osborn, T. J. Climate change and the North Atlantic Oscillation. Geophys. Monogr. Ser. 134, 193–209 (2003).
Bustnes, J. O., Gabrielsen, G. W. & Verreault, J. Climate variability and temporal trends of persistent organic pollutants in the arctic: a study of glaucous gulls. Environ. Sci. Technol. 44, 3155–3161 (2010).
Braune, B. M., Gaston, A. J., Hobson, K. A., Gilchrist, H. G. & Mallory, M. L. Changes in trophic position affect rates of contaminant decline at two seabird colonies in the Canadian Arctic. Ecotoxicol. Environ. Saf. 115, 7–13 (2015).
Bustnes, J. O. et al. Temporal variation in circulating concentrations of organochlorine pollutants in a pelagic seabird breeding in the high Arctic. Environ. Toxicol. Chem. 36, 442–448 (2017).
Lebeuf, M., Measures, L., Noel, M., Raach, M. & Trottier, S. A twenty-one year temporal trend of persistent organic pollutants in St. Lawrence Estuary beluga, Canada. Sci. Total Environ. 485, 377–386 (2014).
Desforges, J.-P. W., Ross, P. S. & Loseto, L. L. Transplacental transfer of polychlorinated biphenyls and polybrominated diphenyl ethers in arctic beluga whales (Delphinapterus leucas). Environ. Toxicol. Chem. 31, 296–300 (2012).
Letcher, R. J. et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci. Total Environ. 408, 2995–3043 (2010).
Alharbi, O. M. L., Basheer, A. A., Khattab, R. A. & Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018).
Corsolini, S., Ademollo, N., Romeo, T., Greco, S. & Focardi, S. Persistent organic pollutants in edible fish: a human and environmental health problem. Microchem. J. 79, 115–123 (2005).
Ross, P. S. & Birnbaum, L. S. Integrated human and ecological risk assessment: A case study of persistent organic pollutants (POPs) in humans and wildlife. Hum. Ecol. Risk Assess. 9, 303–324 (2003).
Brown, C. T., Yahn, J. M. & Karasov, W. H. Warmer temperature increases toxicokinetic elimination of PCBs and PBDEs in Northern leopard frog larvae (Lithobates pipiens). Aquat. Toxicol. 234, 105806 (2021).
Cabral, H., Fonseca, V., Sousa, T. & Leal, M. C. Synergistic effects of climate change and marine pollution: an overlooked interaction in coastal and estuarine areas. Int. J. Environ. Res. Public Health 16, 2737 (2019).
Carrie, J. et al. Increasing contaminant burdens in an Arctic fish, burbot (Lota lota), in a warming climate. Environ. Sci. Technol. 44, 316–322 (2010).
Huang, A. et al. The effect of temperature on toxicokinetics and the chronic toxicity of insecticides towards Gammarus pulex. Sci. Total Environ. 856, 158886 (2023).
Mangold-Döring, A., Huang, A., Van Nes, E. H., Focks, A. & Van den Brink, P. J. Explicit consideration of temperature improves predictions of toxicokinetic-toxicodynamic models for Flupyradifurone and Imidacloprid in Gammarus pulex. Environ. Sci. Technol. 56, 15920–15929 (2022).
Moe, S. J. et al. Integrating climate model projections into environmental risk assessment: A probabilistic modeling approach. Integr. Environ. Assess. Manag. 20, 367–383 (2024).
Buckman, A. H. et al. Role of temperature and enzyme induction in the biotransformation of polychlorinated biphenyls and bioformation of hydroxylated polychlorinated biphenyls by rainbow trout (Oncorhynchus mykiss). Environ. Sci. Technol. 41, 3856–3863 (2007).
Patra, R. W., Chapman, J. C., Lim, R. P., Gehrke, P. C. & Sunderam, R. M. Interactions between water temperature and contaminant toxicity to freshwater fish. Environ. Toxicol. Chem. 34, 1809–1817 (2015).
Patra, R. W., Chapman, J. C., Lim, R. P. & Gehrke, P. C. The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ. Toxicol. Chem. 26, 1454–1459 (2007).
Zaman, T. et al. Endosulfan affects embryonic development synergistically under elevated ambient temperature. Environ. Sci. Pollut. Res. 30, 73393–73404 (2023).
Vidal, A. et al. Does water temperature influence the distribution and elimination of perfluorinated substances in rainbow trout (Oncorhynchus mykiss)?. Environ. Sci. Pollut. Res. 26, 16355–16365 (2019).
Vidal, A., Babut, M., Garric, J. & Beaudouin, R. Elucidating the fate of perfluorooctanoate sulfonate using a rainbow trout (Oncorhynchus mykiss) physiologically-based toxicokinetic model. Sci. Total Environ. 691, 1297–1309 (2019).
Vidal, A., Babut, M., Garric, J. & Beaudouin, R. Temperature effect on perfluorooctane sulfonate toxicokinetics in rainbow trout (Oncorhynchus mykiss): Exploration via a physiologically based toxicokinetic model. Aquat. Toxicol. 225, 105545 (2020).
Harwood, A. D., You, J. & Lydy, M. J. Temperature as a toxicity identification tool for pyrethroid insecticides: toxicokinetic confirmation. Environ. Toxicol. Chem. 28, 1051–1058 (2009).
Zhang, Q., Zhang, Y., Hu, D., Wen, W. & Xia, X. An unexpected synergistic toxicity caused by competitive bioconcentration of perfluoroalkyl acid mixtures to Daphnia magna: Further promoted by elevated temperature. Environ. Pollut. 315, 120336 (2022).
Gergs, A., Zenker, A., Grimm, V. & Preuss, T. G. Chemical and natural stressors combined: from cryptic effects to population extinction. Sci. Rep. 3, 2036 (2013).
Baas, J., Augustine, S., Marques, G. M. & Dorne, J.-L. Dynamic energy budget models in ecological risk assessment: From principles to applications. Sci. Total Environ. 628-629, 249–260 (2018).
Grech, A. et al. Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability. Sci. Total Environ. 651, 516–531 (2019).
Mounier, F. et al. Dietary bioaccumulation of persistent organic pollutants in the common sole Solea solea in the context of global change. Part 2: Sensitivity of juvenile growth and contamination to toxicokinetic parameters uncertainty and environmental conditions variability in estuaries. Ecol. Model. 431, 109196 (2020).
Raths, J., Svara, V., Lauper, B., Fu, Q. & Hollender, J. Speed it up: How temperature drives toxicokinetics of organic contaminants in freshwater amphipods. Glob. Change Biol. 29, 1390–1406 (2023).
Cropp, R., Kerr, G., Bengtson-Nash, S. & Hawker, D. A dynamic biophysical fugacity model of the movement of a persistent organic pollutant in Antarctic marine food webs. Environ. Chem. 8, 263–280 (2011).
Cropp, R., Nash, S. B. & Hawker, D. A model to resolve organochlorine pharmocokinetics in migrating humpback whales. Environ. Toxicol. Chem. 33, 1638–1649 (2014).
Pörtner, H. O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. a-Mol. Integr. Physiol. 132, 739–761 (2002).
Buckley, L. B. & Huey, R. B. How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integr. Comp. Biol. 56, 98–109 (2016).
Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).
Rebolledo, A. P., Sgro, C. M. & Monro, K. Thermal performance curves are shaped by prior thermal environment in early life. Front. Physiol. 12, 738338 (2021).
Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in Ectotherms. Integr. Comp. Biol. 59, E198–E198 (2019).
Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
Li, A. J. et al. Extreme cold or warm events can potentially exacerbate chemical toxicity to the marine medaka fish Oryzias melastigma. Aquat. Toxicol. 249, 106226 (2022).
Patra, R. W., Chapman, J. C., Lim, R. P., Gehrke, P. C. & Sunderam, R. M. Effects of temperature on ventilatory behavior of fish exposed to sublethal concentrations of endosulfan and chlorpyrifos. Environ. Toxicol. Chem. 28, 2182–2190 (2009).
Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
Kwok, K. W. H. et al. Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integr. Environ. Assess. Manag. 3, 49–67 (2007).
Morgan, R., Finnoen, M. H., Jensen, H., Pelabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. Natl. Acad. Sci. USA 117, 33365–33372 (2020).
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Bednarz, V. N. et al. Acute exposure to perfluorooctane sulfonate exacerbates heat-induced oxidative stress in a tropical coral species. Environ. Pollut. 302, 119054 (2022).
Mentzel, S. et al. Evaluating the effects of climate change and chemical, physical, and biological stressors on nearshore coral reefs: A case study in the Great Barrier Reef, Australia. Integr. Environ. Assess. Manag. 20, 401–418 (2024).
Lavergne, E. et al. Does the chronic chemical contamination of a European flounder population decrease its thermal tolerance?. Mar. Pollut. Bull. 95, 658–664 (2015).
Borcier, E. et al. Bioenergetic Transcriptomic Responses of European Flounder (Platichthys Flesus) Populations in Contrasted. Environments: Impacts Pollut. Glob. Warm. J. Xenobiot. 6, 6586–6586 (2016).
Anacleto, P. et al. Fish energy budget under ocean warming and flame retardant exposure. Environ. Res. 164, 186–196 (2018).
Dias, M. et al. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. Sci. Total Environ. 881, 163400 (2023).
Braune, B. M. & Letcher, R. J. Perfluorinated sulfonate and carboxylate compounds in eggs of seabirds breeding in the Canadian Arctic: Temporal trends (1975-2011) and interspecies comparison. Environ. Sci. Technol. 47, 616–624 (2013).
Butt, C. M., Mabury, S. A., Muir, D. C. G. & Braune, B. M. Prevalence of long-chained perfluorinated carboxylates in seabirds from the canadian arctic between 1975 and 2004. Environ. Sci. Technol. 41, 3521–3528 (2007).
Choy, E. S. et al. Potential disruption of thyroid hormones by perfluoroalkyl acids in an Arctic seabird during reproduction. Environ. Pollut. 305, 119181 (2022).
Esparza, I. et al. Mercury, legacy and emerging POPs, and endocrine-behavioural linkages: Implications of Arctic change in a diving seabird. Environ. Res. 212, 113190–113190 (2022).
Jenssen, B. M. et al. Anthropogenic flank attack on polar bears: interacting consequences of climate warming and pollutant exposure. Front. Ecol. Evol. 3, Article 16 (2015).
Maulvault, A. L. et al. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves. Environ. Res. 161, 236–247 (2018).
Munari, M. et al. Ocean acidification, but not environmental contaminants, affects fertilization success and sperm motility in the sea urchin paracentrotus lividus. J. Mar. Sci. Eng. 10, 247 (2022).
Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).
Wu, R. S. S. Chapter 3, Effects of hypoxia on fish reproduction and development. In: Fish Physiology (eds. Richards, J. G., Farrell, A. P. & Brauner, C. J.). 79-141. https://doi.org/10.1016/s1546-5098(08)00003-4 (Academic Press, 2009).
Preus-Olsen, G., Olufsen, M. O., Pedersen, S. A., Letcher, R. J. & Arukwe, A. Effects of elevated dissolved carbon dioxide and perfluorooctane sulfonic acid, given singly and in combination, on steroidogenic and biotransformation pathways of Atlantic cod. Aquat. Toxicol. 155, 222–235 (2014).
Oppenheimer, M. et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H. O. et al.). 321–445. https://doi.org/10.1017/9781009157964.006 (Cambridge University Press, Cambridge, United Kingdom, 2019).
Riou, V. et al. Impact of environmental DDT concentrations on gill adaptation to increased salinity in the tilapia Sarotherodon melanotheron. Comp. Biochem. Physiol. C.-Toxicol. Pharmacol. 156, 7–16 (2012).
Van den Brink, P. J. Ecological risk assessment: from book-keeping to chemical stress ecology. Environ. Sci. Technol. 42, 8999–9004 (2008).
Lipton, D. et al. Chapter 7: Ecosystems, Ecosystem Services, and Biodiversity. In: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II (eds. Reidmiller, D. R. et al.). 268–321. https://doi.org/10.7930/NCA4.2018.CH7 (U.S. Global Change Research Program, Washington, DC, USA, 2018).
Lovejoy, T. E. & Hannah, L. (eds.). Biodiversity and Climate Change: Transforming the Biosphere. 352 https://doi.org/10.2307/j.ctv8jnzw1 (Yale University Press, New Haven, Connecticut, 2019).
Pershing, A. J. et al. Oceans and Marine Resources. In: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II (eds. Reidmiller, D. R. et al.). 353–390. https://doi.org/10.7930/NCA4.2018.CH9 (Global Change Research Program, Washington, DC, USA, 2018).
Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).
Gouin, T. et al. Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environ. Toxicol. Chem. 32, 20–31 (2013).
Landis, W. G. et al. Global climate change and contaminants, a call to arms not yet heard?. Integr. Environ. Assess. Manag. 10, 483–484 (2014).
Pastorok, R. A., Bartell, S. M., Ferson, S. & Ginzburg, L. R. Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes, 1st edn. 328 https://doi.org/10.1201/9781420032321 (CRC Press, Boca Raton, FL, 2001).
Burek, K. A., Gulland, F. M. D. & O,Hara, T. M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 18, S126–S134 (2008).
deSwart, R. L., Ross, P. S., Vos, J. G. & Osterhaus, A. Impaired immunity in harbour seals (Phoca vitulina) exposed to bioaccumulated environmental contaminants: Review of a long-term feeding study. Environ. Health Perspect. 104, 823–828 (1996).
Gilbertson, M. K., Haffner, G. D., Drouillard, K. G., Albert, A. & Dixon, B. Immunosuppression in the northern leopard frog (Rana pipiens) induced by pesticide exposure. Environ. Toxicol. Chem. 22, 101–110 (2003).
Kajiwara, N. et al. Organochlorine and organotin compounds in Caspian seals (Phoca caspica) collected during an unusual mortality event in the Caspian Sea in 2000. Environ. Pollut. 117, 391–402 (2002).
Macdonald, R. W. Climate change, risks and contaminants: A perspective from studying the Arctic. Hum. Ecol. Risk Assess. 11, 1099–1104 (2005).
Sagerup, K., Henriksen, E. O., Skorping, A., Skaare, J. U. & Gabrielsen, G. W. Intensity of parasitic nematodes increases with organochlorine levels in the glaucous gull. J. Appl. Ecol. 37, 532–539 (2000).
Groh, K., Vom Berg, C., Schirmer, K. & Tlili, A. Anthropogenic chemicals as underestimated drivers of biodiversity loss: scientific and societal implications. Environ. Sci. Technol. 56, 707–710 (2022).
Barnthouse, L., Munns, W. & Sorensen, M. T. Population-level ecological risk assessment. 376 (CRC Press Boca Raton, FL, 2008).
Atwood, T. C. et al. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Sci. Rep. 7, 13193 (2017).
Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).
Hof, C., Levinsky, I., Araujo, M. B. & Rahbek, C. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011).
Mackenzie, C. L., Lynch, S. A., Culloty, S. C. & Malham, S. K. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis. Plos One 9, e99712 (2014).
Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl. Acad. Sci. USA 105, 17436–17441 (2008).
Sonne, C., Letcher, R. J., Jenssen, B. M. & Dietz, R. Arctic Ecosystems, Wildlife and Man: Threats from Persistent Organic Pollutants and Mercury. In: Arctic One Health, Challenges for Northern Animals and People (eds. Tryland, M.). https://doi.org/10.1007/978-3-030-87853-5 (Springer, 6330 Cham, Switzerland, 2022).
Dahlke, F. T., Wohlrab, S., Butzin, M. & Poertner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).
Broomhall, S. D. Egg temperature modifies predator avoidance and the effects of the insecticide endosulfan on tadpoles of an Australian frog. J. Appl. Ecol. 41, 105–113 (2004).
Fuller, N. et al. Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures. Environ. Pollut. 314, 120308 (2022).
Geoffroy, M. et al. The circumpolar impacts of climate change and anthropogenic stressors on Arctic cod (Boreogadus saida) and its ecosystem. Elem.-Sci. Anth. 11, 00097 (2023).
Réalis-Doyelle, E. et al. Evolution of pace-of-life syndrome under conditions of maternal PCB contamination and global warming in early life stages of cold stenothermic fish (Arctic char). Aquat. Toxicol. 255, 106396 (2023).
Magnuson, J. T. et al. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). Environ. Pollut. 318, 120938 (2023).
Brown, T. M. et al. Divergent habitat use and the influence of sea ice concentration on the movement behaviour of ringed seals Pusa hispida in Labrador, Canada. Mar. Ecol. Prog. Ser. 710, 137–153 (2023).
Hallanger, I. G. et al. Seasonality in contaminant accumulation in arctic marine pelagic food webs using trophic magnification factor as a measure of bioaccumulation. Environ. Toxicol. Chem. 30, 1026–1035 (2011).
Nash, S. M. B. et al. Signals from the south; Humpback whales carry messages of Antarctic sea-ice ecosystem variability. Glob. Change Biol. 24, 1500–1510 (2018).
Bustnes, J. O. et al. The impact of climate sensitive factors on the exposure to organohalogenated contaminants in an aquatic bird exploiting both marine and freshwater habitats. Sci. Total Environ. 850, 157667 (2022).
Bradshaw, C., Golz, A.-L. & Gustafsson, K. Coastal ecosystem effects of increased summer temperature and contamination by the flame retardant HBCDD. J. Mar. Sci. Eng. 5, https://doi.org/10.3390/jmse5020018 (2017).
Rodríguez, J. et al. Effects of organic pollutants on bacterial communities under future climate change scenarios. Front. Microbiol. 9, 2926 (2018).
Xin, X. et al. Binary toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers to Arctic Cyanobacteria under ambient and future climates. Water Res. 226, 119188 (2022).
Pittino, F. et al. Impact of anthropogenic contamination on glacier surface biota. Curr. Opin. Biotechnol. 80, 102900 (2023).
Carlsson, P., Warner, N. A., Hallanger, I. G., Herzke, D. & Kallenborn, R. Spatial and temporal distribution of chiral pesticides in Calanus spp. from three Arctic fjords. Environ. Pollut. 192, 154–161 (2014).
Hallanger, I. G. et al. Influence of season, location, and feeding strategy on bioaccumulation of halogenated organic contaminants in arctic marine zooplankton. Environ. Toxicol. Chem. 30, 77–87 (2011).
Hallanger, I. G. et al. Differences between Arctic and Atlantic fjord systems on bioaccumulation of persistent organic pollutants in zooplankton from Svalbard. Sci. Total Environ. 409, 2783–2795 (2011).
Borgå, K., Fisk, A. T., Hoekstra, P. F. & Muir, D. C. G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in arctic marine food webs. Environ. Toxicol. Chem. 23, 2367–2385 (2004).
Bourque, J. et al. Climate-associated drivers of plasma cytokines and contaminant concentrations in Beaufort Sea polar bears (Ursus maritimus). Sci. Total Environ. 745, 140978 (2020).
Brown, T. M., Macdonald, R. W., Muir, D. C. G. & Letcher, R. J. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s Eastern Arctic. Sci. Total Environ. 618, 500–517 (2018).
Elliott, J. E. et al. Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers?. Environ. Sci. Technol. 46, 9681–9689 (2012).
McKinney, M. A., Peacock, E. & Letcher, R. J. Sea Ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. Environ. Sci. Technol. 43, 4334–4339 (2009).
McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372 (2013).
Nash, S. M. B. et al. Antarctic sea-ice low resonates in the ecophysiology of humpback whales. Sci. Total Environ. 887, 164053 (2023).
Rigét, F., Vorkamp, K., Eulaers, I. & Dietz, R. Influence of climate and biological variables on temporal trends of persistent organic pollutants in Arctic char and ringed seals from Greenland. Environ. Sci.-Process. Impacts 22, 993–1005 (2020).
Simond, A. É et al. A multi-matrix metabolomic approach in ringed seals and beluga whales to evaluate contaminant and climate-related stressors. Metabolites 12, 813 (2022).
Sonne, C. et al. Size and density of East Greenland polar bear (Ursus maritimus) skulls: Valuable bio-indicators of environmental changes?. Ecol. Indic. 34, 290–295 (2013).
Tartu, S. et al. Sea ice-associated decline in body condition leads to increased concentrations of lipophilic pollutants in polar bears (Ursus maritimus) from Svalbard, Norway. Sci. Total Environ. 576, 409–419 (2017).
Tartu, S. et al. Multiple-stressor effects in an apex predator: combined influence of pollutants and sea ice decline on lipid metabolism in polar bears. Sci. Rep. 7, 16487 (2017).
Facciola, N., Houde, M., Muir, D. C. G., Ferguson, S. H. & McKinney, M. A. Feeding and contaminant patterns of sub-arctic and arctic ringed seals: Potential insight into climate change-contaminant interactions. Environ. Pollut. 313, 120108 (2022).
Krause, D. J. et al. Evaluating threats to South Shetland Antarctic fur seals amidst population collapse. Mammal. Rev. 54, 30–46 (2024).
Hall, J. et al. Persistent organic pollutants and trace elements detected in New Zealand fur seals (long-nosed fur seal; Arctocephalus forsteri) from New South Wales, Australia, between 1998 and 2019. Sci. Total Environ. 902, 166087 (2023).
Bustnes, J. O., Miland, O., Fjeld, M., Erikstad, K. E. & Skaare, J. U. Relationships between ecological variables and four organochlorine pollutants in an Arctic glaucous gull (Larus hyperboreus) population. Environ. Pollut. 136, 175–185 (2005).
Bustnes, J. O. et al. Multiple stressors in a top predator seabird: potential ecological consequences of environmental contaminants, population health and breeding conditions. Plos One 10, e0131769 (2015).
Bustnes, J. O. et al. Temporal dynamics of circulating persistent organic pollutants in a fasting seabird under different environmental conditions. Environ. Sci. Technol. 46, 10287–10294 (2012).
Bustnes, J. O. et al. Impacts of a warming climate on concentrations of organochlorines in a fasting high arctic marine bird: Direct vs. indirect effects?. Sci. Total Environ. 908, 168096 (2024).
Blais, J. M. et al. Arctic seabirds transport marine-derived contaminants. Science 309, 445–445 (2005).
Evenset, A. et al. Seabird guano is an efficient conveyer of persistent organic pollutants (POPs) to Arctic lake ecosystems. Environ. Sci. Technol. 41, 1173–1179 (2007).
Geisz, H. N., Dickhut, R. M., Cochran, M. A., Fraser, W. R. & Ducklow, H. W. Melting glaciers: A probable source of DDT to the Antarctic marine ecosystem. Environ. Sci. Technol. 42, 3958–3962 (2008).
Wang, D. et al. Effects of migration and reproduction on the variation in persistent organic pollutant levels in Kentish Plovers from Cangzhou Wetland, China. Sci. Total Environ. 670, 122–128 (2019).
Wild, S. et al. South polar skua (Catharacta maccormicki) as biovectors for long-range transport of persistent organic pollutants to Antarctica. Environ. Pollut. 292, 118358 (2022).
Krümmel, E. M. et al. Delivery of pollutants by spawning salmon-: Fish dump toxic industrial compounds in Alaskan lakes on their return from the ocean. Nature 425, 255–256 (2003).
Hollander, A. et al. Estimating overall persistence and long-range transport potential of persistent organic pollutants: a comparison of seven multimedia mass balance models and atmospheric transport models. J. Environ. Monit. 10, 1139–1147 (2008).
Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 88, 372 (2021).
Gaden, A. et al. Western Canadian Arctic ringed seal organic contaminant trends in relation to sea ice break-up. Environ. Sci. Technol. 46, 4427–4433 (2012).
Houde, M. et al. Trends of persistent organic pollutants in ringed seals (Phoca hispida) from the Canadian Arctic. Sci. Total Environ. 665, 1135–1146 (2019).
Rigét, F., Vorkamp, K., Hobson, K. A., Muir, D. C. G. & Dietz, R. Temporal trends of selected POPs and the potential influence of climate variability in a Greenland ringed seal population. Environ. Sci.-Process. Impacts 15, 1706–1716 (2013).
Routti, H. et al. Emission changes dwarf the influence of feeding habits on temporal trends of per- and polyfluoroalkyl substances in two Arctic Top Predators. Environ. Sci. Technol. 51, 11996–12006 (2017).
Andersen, M. S. et al. Levels and temporal trends of persistent organic pollutants (POPs) in arctic foxes (Vulpes lagopus) from Svalbard in relation to dietary habits and food availability. Sci. Total Environ. 511, 112–122 (2015).
Corsolini, S., Ademollo, N., Romeo, T., Olmastroni, S. & Focardi, S. Persistent organic pollutants in some species of a Ross Sea pelagic trophic web. Antarct. Sci. 15, 95–104 (2003).
Corsolini, S., Borghesi, N., Ademollo, N. & Focardi, S. Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica. Environ. Int. 37, 1329–1335 (2011).