• Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 35004 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Shao, Q. et al. Roadmap of spin-orbit torques. IEEE Trans. Magn. 57, 800439 (2021).

    Article 

    Google Scholar
     

  • Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat Nanotechnol 10, 209–220 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Finley, J. & Liu, L. Spin-orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Phys. Rev. Appl. 6, 54001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat Mater 16, 1187–1192 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. K. et al. Ferrimagnetic spintronics. Nat. Mater. 21, 24–34 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat Nanotechnol. 11, 231–241 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 15005 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).

    Article 
    ADS 

    Google Scholar
     

  • He, Q. L., Hughes, T. L., Armitage, N. P., Tokura, Y. & Wang, K. L. Topological spintronics and magnetoelectronics. Nat. Mater. 21, 15–23 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).

    Article 

    Google Scholar
     

  • Liu, Y. & Shao, Q. Two-dimensional materials for energy-efficient spin-orbit torque devices. ACS Nano 14, 9389–9407 (2020).

    Article 

    Google Scholar
     

  • Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article 

    Google Scholar
     

  • Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article 

    Google Scholar
     

  • Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Parkin, S. & Yang, S. H. Memory on the racetrack. Nat. Nanotechnol. 10, 195–198 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, S. et al. Magnetic skyrmions for unconventional computing. Mater. Horizons 8, 854–868 (2021).

    Article 

    Google Scholar
     

  • Kang, W., Huang, Y., Zhang, X., Zhou, Y. & Zhao, W. Skyrmion-electronics: an overview and outlook. Proc. IEEE 104, 2040–2061 (2016).

    Article 

    Google Scholar
     

  • Chumak, A. V., Vasyuchka, V. I. I., Serga, A. A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453 (2015).

    Article 

    Google Scholar
     

  • Borders, W. A. et al. Integer factorization using stochastic magnetic tunnel junctions. Nature 573, 390–393 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fukami, S. & Ohno, H. Perspective: spintronic synapse for artificial neural network. J. Appl. Phys. 124, 151904 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article 

    Google Scholar
     

  • Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article 

    Google Scholar
     

  • Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Article 

    Google Scholar
     

  • Zázvorka, J. et al. Thermal skyrmion diffusion used in a reshuffler device. Nat. Nanotechnol. 14, 658–661 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Borders, W. A. et al. Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 10, 13007 (2017).

    Article 

    Google Scholar
     

  • Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater. 31, 1900636 (2019).

    Article 

    Google Scholar
     

  • Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article 

    Google Scholar
     

  • Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin-orbit logic. Nature 565, 35–42 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Luo, Z, et al. Chirally coupled nanomagnets. Science 363, 1435–1439 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article 

    Google Scholar
     

  • Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article 

    Google Scholar
     

  • Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat Mater 18, 309–323 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518–523 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Grollier, J., Querlioz, D. & Stiles, M. D. Spintronic nanodevices for bioinspired computing. Proc. IEEE 104, 2024–2039 (2016).

    Article 

    Google Scholar
     

  • Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid. State. Electron. 125, 25–38 (2016).

    Article 
    ADS 

    Google Scholar
     

  • González, V. H., Litvinenko, A., Kumar, A., Khymyn, R. & Åkerman, J. Spintronic devices as next-generation computation accelerators. Curr. Opin. Solid State Mater. Sci. 31, 101173 (2024).

  • Marrows, C. H., Barker, J., Moore, T. A. & Moorsom, T. Neuromorphic computing with spintronics. npj Spintron. 2, 12 (2024).

    Article 

    Google Scholar
     

  • Selcuk, K. et al. Connecting physics to systems with modular spin-circuits. npj Spintron 2, 53 (2024).

    Article 

    Google Scholar
     

  • Roy, K. et al. Spintronic neural systems. Nat. Rev. Electr. Eng. 1, 714–729 (2024).

    Article 

    Google Scholar
     

  • Incorvia, J. A. C. et al. Spintronics for achieving system-level energy-efficient logic. Nat. Rev. Electr. Eng. 1, 700–713 (2024).

    Article 

    Google Scholar
     

  • Editors:, Bandyopadhyay, S. & Barman, A. Nanomagnets as Dynamical Systems: Physics and Applications. (Springer, 2024).

  • Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article 

    Google Scholar
     

  • Chua, L. O. & Kang, S. M. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).

    Article 
    MathSciNet 

    Google Scholar
     

  • Di Ventra, M., Pershin, Y. V. & Chua, L. O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009).

    Article 

    Google Scholar
     

  • Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bao, H., Hu, A., Liu, W. & Bao, B. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Networks Learn. Syst. 31, 502–511 (2020).

    Article 

    Google Scholar
     

  • Li, K. et al. Memristive rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Informatics 18, 1726–1736 (2022).

    Article 

    Google Scholar
     

  • He, S., Zhan, D., Wang, H., Sun, K. & Peng, Y. Discrete memristor and discrete memristive systems. Entropy 24, 786 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ikeda, S. et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Shao, Q. & Wang, K. L. Heat-assisted microwave amplifier. Nat. Nanotechnol. 14, 9–11 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Overview of spintronic sensors with internet of things for smart living. IEEE Trans. Magn. 55, 0800222 (2019).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Spin-torque memristors based on perpendicular magnetic tunnel junctions for neuromorphic computing. Adv. Sci. 8, 2004645 (2021).

    Article 

    Google Scholar
     

  • Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2019).

    Article 

    Google Scholar
     

  • Hu, W. et al. Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing. Nat. Commun. 14, 2562 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Parkin, S. S. P. S., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, D. et al. Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing. Nat. Commun. 14, 1068 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Thermal generation, manipulation and thermoelectric detection of skyrmions. Nat. Electron. 3, 672–679 (2020).

    Article 

    Google Scholar
     

  • Upadhyaya, P., Yu, G., Amiri, P. K. & Wang, K. L. Electric-field guiding of magnetic skyrmions. Phys. Rev. B 92, 134411 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kang, W. et al. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci. Rep. 6, 23164 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Li, S. et al. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Sci. Bull. 67, 691–699 (2022).

    Article 

    Google Scholar
     

  • Guang, Y. et al. Electrical detection of magnetic skyrmions in a magnetic tunnel junction. Adv. Electron. Mater. 9, 2200570 (2023).

    Article 

    Google Scholar
     

  • Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D. Appl. Phys. 43, 264001 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cornelissen, L. J. et al. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022 (2015).

    Article 

    Google Scholar
     

  • Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D. Appl. Phys. 43, 264005 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Serga, A. A., Chumak, A. V. & Hillebrands, B. Y. I. G. magnonics. J. Phys. D. Appl. Phys. 43, 264002 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Sebastian, T., Schultheiss, K., Obry, B., Hillebrands, B. & Schultheiss, H. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale. Front. Phys. 3, 35 (2015).

    Article 

    Google Scholar
     

  • Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. vol. 42 (Springer New York, 1983).

  • Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V. & Chua, L. O. Methods of Qualitative Theory in Nonlinear Dynamics. vol. 5 (WORLD SCIENTIFIC, 2001).

  • Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Introduction to Applied Nonlinear Dynamical Systems and Chaos vol. 2 (Springer-Verlag, 2003).

  • Wang, K. L. et al. Electric-field control of spin-orbit interaction for low-power spintronics. Proc. IEEE 104, 1974–2008 (2016).

    Article 

    Google Scholar
     

  • Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yu, G. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 17, 261–268 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Doevenspeck, J. et al. Multi-pillar SOT-MRAM for accurate analog in-memory DNN inference. Symp. VLSI Technol. T11-2 (2021).

  • Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nat. Phys. 7, 626–630 (2011).

    Article 

    Google Scholar
     

  • Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 4 (2004).

    Article 

    Google Scholar
     

  • Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Grollier, J. et al. Field dependence of magnetization reversal by spin transfer. Phys. Rev. B 67, 174402 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Liu, L., Pai, C.-F., Ralph, D. C. & Buhrman, R. A. Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. Phys. Rev. Lett. 109, 186602 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat Mater 13, 11–20 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. Current-induced magnetic skyrmions oscillator. New J. Phys. 17, 023061 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Mochizuki, M. et al. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nat Mater 13, 241–246 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pribiag, V. S. et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nat. Phys. 3, 498–503 (2007).

    Article 

    Google Scholar
     

  • Mistral, Q. et al. Current-driven vortex oscillations in metallic nanocontacts. Phys. Rev. Lett. 100, 257201 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Onose, Y., Okamura, Y., Seki, S., Ishiwata, S. & Tokura, Y. Observation of magnetic excitations of Skyrmion crystal in a helimagnetic insulator Cu2OSeO3. Phys Rev Lett 109, 37603 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Satywali, B. et al. Microwave resonances of magnetic skyrmions in thin film multilayers. Nat. Commun. 12, 1909 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Rable, J., Dwivedi, J. & Samarth, N. Off-resonant detection of domain wall oscillations using deterministically placed nanodiamonds. npj Spintron 1, 2 (2023).

    Article 

    Google Scholar
     

  • Ono, T. & Nakatani, Y. Magnetic domain wall oscillator. Appl. Phys. Express 1, 061301 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bisig, A., Heyne, L., Boulle, O. & Kläui, M. Tunable steady-state domain wall oscillator with perpendicular magnetic anisotropy. Appl. Phys. Lett 95, 162504 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Xiong, Y. et al. Experimental parameters, combined dynamics, and nonlinearity of a magnonic-opto-electronic oscillator (MOEO). Rev. Sci. Instrum. 91, 125105 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Watt, S. & Kostylev, M. Reservoir computing using a spin-wave delay-line active-ring resonator based on Yttrium-Iron-Garnet Film. Phys. Rev. Appl. 13, 034057 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Litvinenko, A. et al. A spinwave Ising machine. Commun. Phys. 6, 227 (2023).

    Article 

    Google Scholar
     

  • Won Ho Choi et al. A magnetic tunnel junction based true random number generator with conditional perturb and real-time output probability tracking. In 2014 IEEE International Electron Devices Meeting 12.5.1–12.5.4. https://doi.org/10.1109/IEDM.2014.7047039 (IEEE, 2014).

  • Fukushima, A. et al. Spin dice: a scalable truly random number generator based on spintronics. Appl. Phys. Express 7, 083001 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Vincent, A. F. et al. Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems. IEEE Trans. Biomed. Circuits Syst. 9, 166–174 (2015).

    Article 

    Google Scholar
     

  • Hayakawa, K. et al. Nanosecond random telegraph noise in in-plane magnetic tunnel junctions. Phys. Rev. Lett. 126, 117202 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, L. et al. Topology-dependent brownian gyromotion of a single skyrmion. Phys. Rev. Lett. 125, 027206 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kerber, N. et al. Anisotropic skyrmion diffusion controlled by magnetic-field-induced symmetry breaking. Phys. Rev. Appl. 15, 044029 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci Adv 1, e1500740 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Farhan, A. et al. Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat. Phys. 9, 375–382 (2013).

    Article 

    Google Scholar
     

  • Ghosh, S. Spintronics and security: prospects, vulnerabilities, attack models, and preventions. Proc. IEEE 104, 1864–1893 (2016).

    Article 

    Google Scholar
     

  • Li, Z., Li, Y. C. & Zhang, S. Dynamic magnetization states of a spin valve in the presence of dc and ac currents: synchronization, modification, and chaos. Phys. Rev. B 74, 054417 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Z., Zhang, S. & Li, Y. C. Chaotic dynamics of spin-valve oscillators. Phys. Rev. Lett. 99, 134101 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Montoya, E. A. et al. Magnetization reversal driven by low dimensional chaos in a nanoscale ferromagnet. Nat. Commun. 10, 543 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Shen, L. et al. Current-induced dynamics and chaos of antiferromagnetic bimerons. Phys. Rev. Lett. 124, 037202 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Petit-Watelot, S. et al. Commensurability and chaos in magnetic vortex oscillations. Nat. Phys. 8, 682–687 (2012).

    Article 

    Google Scholar
     

  • Devolder, T. et al. Chaos in magnetic nanocontact vortex oscillators. Phys. Rev. Lett. 123, 147701 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gusakova, D. et al. Spin-polarized current-induced excitations in a coupled magnetic layer system. Phys. Rev. B 79, 104406 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Matsumoto, R., Lequeux, S., Imamura, H. & Grollier, J. Chaos and relaxation oscillations in spin-torque windmill spiking oscillators. Phys. Rev. Appl. 11, 044093 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chen, L. et al. Dynamical mode coexistence and chaos in a nanogap spin Hall nano-oscillator. Phys. Rev. B 100, 104436 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Okuno, H. & Homma, T. Chaotic oscillation of domain wall in non-equilibrium state. IEEE Trans. Magn. 29, 2506–2511 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Shen, L. et al. Signal detection based on the chaotic motion of an antiferromagnetic domain wall. Appl. Phys. Lett. 118, 012402 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Chaotic spin-wave solitons in magnetic film feedback rings. Phys. Rev. Lett. 107, 114102 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Matsunaga, S. et al. Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions. Appl. Phys. Express 1, 0913011–0913013 (2008).

    Article 

    Google Scholar
     

  • Jain, S., Ranjan, A., Roy, K. & Raghunathan, A. Computing in memory with spin-transfer torque magnetic RAM. IEEE Trans. Very Large Scale Integr. Syst. 26, 470–483 (2018).

    Article 

    Google Scholar
     

  • Sakimura, N., Sugibayashi, T., Nebashi, R. & Kasai, N. Nonvolatile magnetic flip-flop for standby-power-free SoCs. IEEE J. Solid-State Circuits 44, 2244–2250 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hanyu, T. et al. Standby-power-free integrated circuits using MTJ-based VLSI computing. Proc. IEEE 104, 1844–1863 (2016).

    Article 

    Google Scholar
     

  • Natsui, M. et al. A 47.14-μW 200-MHz MOS/MTJ-hybrid nonvolatile microcontroller unit embedding STT-MRAM and FPGA for IoT applications. IEEE J. Solid-State Circuits 54, 2991–3004 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rossi, D. et al. 4.4 A 1.3TOPS/W @ 32GOPS fully integrated 10-core SoC for IoT end-nodes with 1.7 μW cognitive wake-up from MRAM-based state-retentive sleep mode. In 2021 IEEE International Solid- State Circuits Conference (ISSCC) 60–62. https://doi.org/10.1109/ISSCC42613.2021.9365939 (IEEE, 2021).

  • Sun, B. et al. MRAM Co-designed Processing-in-Memory CNN Accelerator for Mobile and IoT Applications. https://arxiv.org/abs/1811.12179 (2018).

  • Chang, T.-C. et al. 13.4 A 22 nm 1 Mb 1024b-read and near-memory-computing dual-mode STT-MRAM macro with 42.6GB/s read bandwidth for security-aware mobile devices. In 2020 IEEE International Solid- State Circuits Conference – (ISSCC) 224–226. https://doi.org/10.1109/ISSCC19947.2020.9063072 (IEEE, 2020).

  • Cai, H. et al. A survey of in-spin transfer torque MRAM computing. Sci. China Inf. Sci. 64, 160402 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Khitun, A. & Wang, K. L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 34306 (2011).

    Article 

    Google Scholar
     

  • Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Spin-wave logical gates. Appl. Phys. Lett. 87, 1–3 (2005).

    Article 

    Google Scholar
     

  • Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K. L. & Amiri, P. K. Nonvolatile spintronics: perspectives on instant-on nonvolatile nanoelectronic systems. Spin 02, 1250009 (2012).

    Article 

    Google Scholar
     

  • Fischer, T. et al. Experimental prototype of a spin-wave majority gate. Appl. Phys. Lett. 110, 152401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Pham, V. T. et al. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nat. Electron. 3, 309–315 (2020).

    Article 

    Google Scholar
     

  • Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Dery, H., Dalal, P., Cywiński, Ł. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens. Matter 32, 143001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hayashi, M., Thomas, L., Moriya, R., Rettner, C. & Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Franken, J. H., Swagten, H. J. M. & Koopmans, B. Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat. Nanotechnol. 7, 499–503 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Golonzka, O. et al. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. 2018 Int. Electron Devices Meet. 18.1.1–18.1.4. https://doi.org/10.1109/iedm.2018.8614620 (2018).

  • Wen, W. et al. CD-ECC: Content-dependent error correction codes for combating asymmetric nonvolatile memory operation errors. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 1–8. https://doi.org/10.1109/ICCAD.2013.6691090 (2013).

  • Han, J. & Orshansky, M. Approximate computing: an emerging paradigm for energy-efficient design. In 2013 18TH IEEE EUROPEAN TEST SYMPOSIUM (ETS) 1–6. https://doi.org/10.1109/ETS.2013.6569370 (IEEE, 2013).

  • Li, Y. et al. A survey of MRAM-centric computing: from near memory to in memory. IEEE Trans. Emerg. Top. Comput. 11, 318–330 (2023).

    Article 

    Google Scholar
     

  • Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Shibata, T. et al. Linear and symmetric conductance response of magnetic domain wall type spin-memristor for analog neuromorphic computing. Appl. Phys. Express 13, 043004 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).

    Article 

    Google Scholar
     

  • Zabihi, M. et al. In-memory processing on the spintronic CRAM: from hardware design to application mapping. IEEE Trans. Comput. 68, 1159–1173 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Doevenspeck, J. et al. SOT-MRAM based analog in-memory computing for DNN inference. Symp. VLSI Technol. (2020).

  • Shao, Q., Wang, Z. & Yang, J. J. Efficient AI with MRAM. Nat. Electron. 5, 67–68 (2022).

    Article 

    Google Scholar
     

  • Xiao, Z. et al. Device variation-aware adaptive quantization for mram-based accurate in-memory computing without on-chip training. IEEE Internatinal Electron Devices Meeting (IEDM) 10.5.1–10.5.4. https://doi.org/10.1109/IEDM45625.2022.10019482 (2022).

  • Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. https://doi.org/10.1017/CBO9781107447615 (2014).

  • Caporale, N. & Dan, Y. Spike timing–dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    Article 

    Google Scholar
     

  • Krzysteczko, P., Münchenberger, J., Schäfers, M., Reiss, G. & Thomas, A. The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. Adv. Mater. 24, 762–766 (2012).

    Article 

    Google Scholar
     

  • Chua, L., Sbitnev, V. & Kim, H. Hodgkin-Huxley axon is made of memristors. Int. J. Bifurc. Chaos 22, 1230011 (2012).

    Article 

    Google Scholar
     

  • Yi, W. et al. Biological plausibility and stochasticity in scalable VO 2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hassan, N. et al. Magnetic domain wall neuron with lateral inhibition. J. Appl. Phys. 124, 152127 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, S. et al. Magnetic skyrmion-based artificial neuron device. Nanotechnology 28, 31LT01 (2017).

    Article 

    Google Scholar
     

  • Chen, X. et al. A compact skyrmionic leaky–integrate–fire spiking neuron device. Nanoscale 10, 6139–6146 (2018).

    Article 

    Google Scholar
     

  • Yang, Q. et al. Spintronic integrate-fire-reset neuron with stochasticity for neuromorphic computing. Nano Lett. 22, 8437–8444 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Networks 115, 100–123 (2019).

    Article 

    Google Scholar
     

  • Wu, X., Tong, Z. & Shao, Q. Optimizing reservoir computing based on an alternating input-driven spin-torque oscillator. Phys. Rev. Appl. 20, 024069 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Papp, Á., Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pinna, D., Bourianoff, G. & Everschor-Sitte, K. Reservoir computing with random skyrmion textures. Phys. Rev. Appl. 14, 054020 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yokouchi, T. et al. Pattern recognition with neuromorphic computing using magnetic field–induced dynamics of skyrmions. Sci. Adv. 8, eabq5652 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Y. et al. Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system. Nat. Commun. 14, 3434 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Furuta, T. et al. Macromagnetic simulation for reservoir computing utilizing spin dynamics in magnetic tunnel junctions. Phys. Rev. Appl. 10, 034063 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tsunegi, S. et al. Physical reservoir computing based on spin torque oscillator with forced synchronization. Appl. Phys. Lett. 114, 164101 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Marković, D. et al. Reservoir computing with the frequency, phase, and amplitude of spin-torque nano-oscillators. Appl. Phys. Lett. 114, 012409 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Riou, M. et al. Temporal pattern recognition with delayed-feedback spin-torque nano-oscillators. Phys. Rev. Appl. 12, 024049 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dvornik, M., Awad, A. A. & Åkerman, J. Origin of magnetization auto-oscillations in constriction-based spin hall nano-oscillators. Phys. Rev. Appl. 9, 014017 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Leroux, N. et al. Radio-frequency multiply-and-accumulate operations with spintronic synapses. Phys. Rev. Appl. 15, 034067 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Leroux, N. et al. Hardware realization of the multiply and accumulate operation on radio-frequency signals with magnetic tunnel junctions. Neuromorphic Comput. Eng. 1, 011001 (2021).

    Article 

    Google Scholar
     

  • Zahedinejad, M. et al. Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nat. Mater. 21, 81–87 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ross, A. et al. Multilayer spintronic neural networks with radiofrequency connections. Nat. Nanotechnol. 18, 1273–1280 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Physical reservoir computing using magnetic skyrmion memristor and spin torque nano-oscillator. Appl. Phys. Lett. 115, 192403 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ababei, R. V. et al. Neuromorphic computation with a single magnetic domain wall. Sci. Rep. 11, 15587 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lee, O. et al. Task-adaptive physical reservoir computing. Nat. Mater. 23, 79–87 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Stenning, K. D. et al. Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks. Nat. Commun. 15, 7377 (2024).

    Article 

    Google Scholar
     

  • Rippard, W. H. et al. Injection locking and phase control of spin transfer nano-oscillators. Phys. Rev. Lett. 95, 067203 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Grollier, J., Cros, V. & Fert, A. Synchronization of spin-transfer oscillators driven by stimulated microwave currents. Phys. Rev. B 73, 060409 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Yogendra, K., Fan, D. & Roy, K. Coupled spin torque nano oscillators for low power neural computation. IEEE Trans. Magn. 51, 1–9 (2015).

    Article 

    Google Scholar
     

  • Awad, A. A. et al. Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13, 292–299 (2017).

    Article 

    Google Scholar
     

  • Lebrun, R. et al. Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme. Nat. Commun. 8, 15825 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jin, C. et al. Array of synchronized nano-oscillators based on repulsion between domain wall and skyrmion. Phys. Rev. Appl. 9, 044007 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Csaba, G. & Porod, W. Coupled oscillators for computing: a review and perspective. Appl. Phys. Rev. 7, 011302 (2020).

    Article 

    Google Scholar
     

  • Nikonov, D. E. et al. Coupled-oscillator associative memory array operation for pattern recognition. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 85–93 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pufall, M. R. et al. Physical implementation of coherently coupled oscillator networks. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 76–84 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Litvinenko, A., Khymyn, R., Ovcharov, R. & Åkerman, J. A 50-spin surface acoustic wave Ising machine. Commun. Phys. 8, 58 (2025).

  • Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article 

    Google Scholar
     

  • Brächer, T., Pirro, P. & Hillebrands, B. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale. Phys. Rep. 699, 1–34 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kumar, A. et al. Fabrication of voltage-gated spin Hall nano-oscillators. Nanoscale 14, 1432–1439 (2022).

    Article 

    Google Scholar
     

  • Kumar, A. et al. Robust mutual synchronization in long spin hall nano-oscillator chains. Nano Lett 23, 6720–6726 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Choi, J.-G. et al. Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators. Nat. Commun. 13, 3783 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Khademi, M., Kumar, A., Rajabali, M., Dash, S. P. & Åkerman, J. Large non-volatile frequency tuning of spin hall nano-oscillators using circular memristive nano-gates. IEEE Electron Device Lett 45, 268–271 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, A. et al. Spin-wave-mediated mutual synchronization and phase tuning in spin Hall nano-oscillators. Nat. Phys. https://doi.org/10.1038/s41567-024-02728-1 (2025).

  • Wittrock, S. et al. Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points. Nat. Commun. 15, 971 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Chen, T. et al. Spin-torque and spin-hall nano-oscillators. Proc. IEEE 104, 1919–1945 (2016).

    Article 

    Google Scholar
     

  • Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Phan, N.-T. et al. Unbiased random bitstream generation using injection-locked spin-torque nano-oscillators. Phys. Rev. Appl. 21, 034063 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Srinivasan, G., Sengupta, A. & Roy, K. Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning. Sci. Rep. 6, 29545 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cai, J. et al. Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junction. Phys. Rev. Appl. 11, 034015 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Farcis, L. et al. Spiking dynamics in dual free layer perpendicular magnetic tunnel junctions. Nano Lett. 23, 7869–7875 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article 
    MathSciNet 

    Google Scholar
     

  • Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Stochastic p-bits for invertible logic. Phys. Rev. X 7, 031014 (2017).


    Google Scholar
     

  • Yin, J. et al. Scalable ising computer based on ultra-fast field-free spin orbit torque stochastic device with extreme 1-bit quantization. IEEE International Electron Devices Meeting (IEDM) 36.1.1–36.1.4. https://doi.org/10.1109/IEDM45625.2022.10019520 (2022).

  • Shao, Y. et al. Probabilistic computing with voltage-controlled dynamics in magnetic tunnel junctions. Nanotechnology 34, 495203 (2023).

  • Chowdhury, S. et al. A full-stack view of probabilistic computing with p-bits: devices, architectures, and algorithms. IEEE J. Explor. Solid-State Comput. Devices Circuits 9, 1–11 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Grimaldi, A. et al. Experimental evaluation of simulated quantum annealing with MTJ-augmented p-bits. IEEE Electron Devices Meeting (IEDM) 22.4.1–22.4.4. https://doi.org/10.1109/IEDM45625.2022.10019530 (2022).

  • Chai, X., Fu, X., Gan, Z., Lu, Y. & Chen, Y. A color image cryptosystem based on dynamic DNA encryption and chaos. Sig. Process. 155, 44–62 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chua, L. O. Memristors on ‘edge of chaos’. Nat. Rev. Electr. Eng. 1, 614–627 (2024).

    Article 

    Google Scholar
     

  • Yang, K. et al. Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems. Sci. Adv. 6, eaba9901 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yoo, M.-W. et al. Pattern generation and symbolic dynamics in a nanocontact vortex oscillator. Nat. Commun. 11, 601 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, L. et al. Cascadable in-memory computing based on symmetric writing and readout. Sci. Adv. 8, eabq6833 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Fan, Y. et al. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat Mater 13, 699–704 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Shao, Q. et al. Room temperature highly efficient topological insulator/Mo/CoFeB spin-orbit torque memory with perpendicular magnetic anisotropy. In IEEE International Electron Devices Meeting (IEDM) 36.3.1-36.3.4 https://doi.org/10.1109/IEDM.2018.8614499 (2018).

  • Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. et al. Cryogenic in-memory computing using magnetic topological insulators. Nat. Mater. https://doi.org/10.1038/s41563-024-02088-4 (2025).

  • Jinnai, B. et al. High-performance shape-anisotropy magnetic tunnel junctions down to 2.3 nm. In 2020 IEEE International Electron Devices Meeting (IEDM) 24.6.1–24.6.4. https://doi.org/10.1109/IEDM13553.2020.9371972 (IEEE, 2020).

  • Igarashi, J. et al. Single-nanometer CoFeB/MgO magnetic tunnel junctions with high-retention and high-speed capabilities. npj Spintron 2, 1 (2024).

    Article 

    Google Scholar
     

  • Behera, N. et al. Ultra-low current 10 nm spin hall nano-oscillators. Adv. Mater. 36, 2305002 (2024).

  • Leonard, T. et al. Shape-dependent multi-weight magnetic artificial synapses for neuromorphic computing. Adv. Electron. Mater. 8, 2200563 (2022).

    Article 

    Google Scholar
     

  • Raymenants, E. et al. Nanoscale domain wall devices with magnetic tunnel junction read and write. Nat. Electron. 4, 392–398 (2021).

    Article 

    Google Scholar
     

  • Larrañaga, by J. U. et al. Electrical detection and nucleation of a magnetic skyrmion in a magnetic tunnel junction observed via operando magnetic microscopy. Nano Lett. 24, 3557–3565 (2024).

  • Liu, C. et al. Long-distance propagation of short-wavelength spin waves. Nat. Commun. 9, 738 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Long-distance coherent propagation of high-velocity antiferromagnetic spin waves. Phys. Rev. Lett. 130, 096701 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Connelly, D. A. et al. Efficient electromagnetic transducers for spin-wave devices. Sci. Rep. 11, 18378 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Schuman, C. D. et al. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

    Article 

    Google Scholar
     

  • Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article 

    Google Scholar
     

  • Corinto, F., Forti, M. & Chua, L. O. Nonlinear Circuits and Systems with Memristors. https://doi.org/10.1007/978-3-030-55651-8 (Springer International Publishing, 2021).

  • Kim, J. Y. et al. Tuning spin-orbit torques across the phase transition in VO2/NiFe heterostructure. Adv. Funct. Mater. 32, 2111555 (2022).

    Article 

    Google Scholar
     

  • Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).

    Article 
    ADS 

    Google Scholar