Rodriguez, B. J. et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009).
Jia, C. L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).
Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).
Tang, Y. L. et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547–551 (2015).
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Liu, Y. et al. Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth. Nano Lett. 17, 7258–7266 (2017).
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2423 (2020).
Luk’yanchuk I., Razumnaya A., Kondovych S., Tikhonov Y. & Vinokur V. M. Topological ferroelectric chirality. Preprint at https://arxiv.org/abs/2406.19728 (2024).
Naumov, I. I., Bellaiche, L. & Fu, H. X. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Jung, H. et al. Logic operations based on magnetic-vortex-state networks. ACS Nano 6, 3712–3717 (2012).
Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).
Balke, N. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81–88 (2012).
Aguado-Puente, P. & Junquera, J. Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008).
Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 82, 729–732 (1951).
Shirane, G., Sawaguchi, E. & Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951).
Sawaguchi, E., Maniwa, H. & Hoshino, S. Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078–1078 (1951).
Corker, D. L., Glazer, A. M., Dec, J., Roleder, K. & Whatmore, R. W. A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction. Acta Cryst. B 53, 135–142 (1997).
Sapriel, J. Domain-wall orientations in ferroelastics. Phys. Rev. B 12, 5128–5140 (1975).
Liu, Y. et al. Controlled growth and atomic-scale mapping of charged heterointerfaces in PbTiO3/BiFeO3 bilayers. ACS Appl. Mater. Interfaces 9, 25578–25586 (2017).
Wang, W. Y. et al. Atomic level 1D structural modulations at the negatively charged domain walls in BiFeO3 films. Adv. Mater. Interfaces 2, 1500024 (2015).
Tang, Y. L. et al. Atomic-scale mapping of dipole frustration at 90° charged domain walls in ferroelectric PbTiO3 films. Sci. Rep. 4, 4115 (2014).
Ma, T., Fan, Z., Tan, X. & Zhou, L. Atomically resolved domain boundary structure in lead zirconate-based antiferroelectrics. Appl. Phys. Lett. 115, 122902 (2019).
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).
Liu, Y. et al. Translational boundaries as incipient ferrielectric domains in antiferroelectric PbZrO3. Phys. Rev. Lett. 130, 216801 (2023).
Liu, Y. et al. Atomic coordinates and polarization map around a pair of 1/2 a[01\(\bar{1}\)] dislocation cores produced by plastic deformation in relaxor ferroelectric PIN-PMN-PT. J. Appl. Phys. 129, 234101 (2021).
Cabral, M. J., Chen, Z. & Liao, X. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructures 3, 2023040 (2023).
Moore, K. et al. Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film. ACS Appl. Mater. Interfaces 14, 5525–5536 (2022).
Hong, Z. et al. Vortex domain walls in ferroelectrics. Nano Lett. 21, 3533–3539 (2021).
Li, F., Nattermann, T. & Pokrovsky, V. L. Vortex domain walls in helical magnets. Phys. Rev. Lett. 108, 107203 (2012).
Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
Zhang, H. et al. Finite-temperature properties of the antiferroelectric perovskite PbZrO3 from a deep-learning interatomic potential. Phys. Rev. B 110, 054109 (2024).
Shapovalov, K. & Stengel, M. Tilt-driven antiferroelectricity in PbZrO3. Phys. Rev. Mater. 7, L071401 (2023).
Abid, A. Y. et al. Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nat. Commun. 12, 2054 (2021).
Hu, T. et al. Hierarchical domain structures in (Pb,La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 46, 22575 (2020).
Sánchez-Santolino, G. et al. A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers. Nature 626, 529–534 (2024).
MacLaren, I., Villaurrutia, R., Schaffer, B., Houben, L., & Peláiz-Barranco, A. Atomic-scale imaging and quantification of electrical polarisation in incommensurate antiferroelectric lanthanum-doped lead zirconate titanate. Adv. Funct. Mater. 22, 261–266 (2012).
Fu, Z. et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat. Commun. 11, 3809 (2020).
Ma, T. et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys. Rev. Lett. 123, 217602 (2019).
Wei, X.-K., Jia, C.-L., Roleder, K., Dunin-Borkowski, R. E. & Mayer, J. In situ observation of point-defect-induced unit-cell-wise energy storage pathway in antiferroelectric PbZrO3. Adv. Funct. Mater. 31, 2008609 (2021).
Thompson, A. P., Aktulga, H. M. & Berger, R. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).