Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7–δ. Nat. Phys. 20, 1269–1273 (2024).
Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7–δ. Phys. Rev. X 14, 011040 (2024).
Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10−δ single crystals. Nature 631, 531–536 (2024).
Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).
Wang, M., Wen, H.-H., Wu, T., Yao, D.-X. & Xiang, T. Normal and superconducting properties of La3Ni2O7. Chinese Phys. Lett. 41, 077402 (2024).
Locquet, J.-P. et al. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998).
Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. & Sveklo, I. Epitaxial strain and superconductivity in La2–xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002).
Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).
Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).
Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. 133, 146002 (2024).
Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).
Wang, H., Chen, L., Rutherford, A., Zhou, H. & Xie, W. Long-range structural order in a hidden phase of Ruddlesden–Popper bilayer nickelate La3Ni2O7. Inorg. Chem. 63, 5020–5026 (2024).
Zinkevich, M., Solak, N., Nitsche, H., Ahrens, M. & Aldinger, F. Stability and thermodynamic functions of lanthanum nickelates. J. Alloys Compd. 438, 92–99 (2007).
Cui, T. et al. Strain-mediated phase crossover in Ruddlesden–Popper nickelates. Commun. Mater. 5, 32 (2024).
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
Smith, J. A., Cima, M. J. & Sonnenberg, N. High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond. 9, 1531–1534 (1999).
Wang, L. et al. Structure responsible for the superconducting state in La3Ni2O7 at high-pressure and low-temperature conditions. J. Am. Chem. Soc. 146, 7506–7514 (2024).
Li, J. et al. Identification of the superconductivity in bilayer nickelate La3Ni2O7 upon 100 GPa. Preprint at https://arxiv.org/abs/2404.11369 (2025).
Dong, Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7–δ. Nature 630, 847–852 (2024).
Batakliev, T., Georgiev, V., Anachkov, M., Rakovsky, S. & Rakovsky, S. Ozone decomposition. Interdiscip. Toxicol. 7, 47–59 (2014).
Wiesmann, H. et al. Simple model for characterizing the electrical resistivity in A – 15 superconductors. Phys. Rev. Lett. 38, 782–785 (1977).
Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2–xSrxCuO4. Science 323, 603–607 (2009).
Hussey, N. E. Phenomenology of the normal state in-plane transport properties of high-Tc cuprates. J. Phys. Condens. Matter 20, 123201 (2008).
Hwang, H. Y. et al. Scaling of the temperature dependent Hall effect in La2–xSrxCuO4. Phys. Rev. Lett. 72, 2636–2639 (1994).
Zhou, Y. et al. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7. Matter Radiat. Extrem. 10, 027801 (2025).
Gu, Y., Le, C., Yang, Z., Wu, X. & Hu, J. Effective model and pairing tendency in the bilayer Ni-based superconductor La3Ni2O7. Phys. Rev. B 111, 174506 (2025).
Zhang, Y., Lin, L.-F., Moreo, A. & Dagotto, E. Electronic structure, dimer physics, orbital-selective behavior, and magnetic tendencies in the bilayer nickelate superconductor La3Ni2O7 under pressure. Phys. Rev. B 108, L180510 (2023).
Christiansson, V., Petocchi, F. & Werner, P. Correlated electronic structure of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 206501 (2023).
Lechermann, F., Gondolf, J., Bötzel, S. & Eremin, I. M. Electronic correlations and superconducting instability in La3Ni2O7 under high pressure. Phys. Rev. B 108, L201121 (2023).
Yang, Q.-G., Wang, D. & Wang, Q.-H. Possible s±-wave superconductivity in La3Ni2O7. Phys. Rev. B 108, L140505 (2023).
Liu, Y.-B., Mei, J.-W., Ye, F., Chen, W.-Q. & Yang, F. s±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 236002 (2023).
Yang, Y., Zhang, G.-M. & Zhang, F.-C. Interlayer valence bonds and two-component theory for high-Tc superconductivity of La3Ni2O7 under pressure. Phys. Rev. B 108, L201108 (2023).
Shen, Y., Qin, M. & Zhang, G.-M. Effective bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure. Chinese Phys. Lett. 40, 127401 (2023).
Qin, Q. & Yang, Y. High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7. Phys. Rev. B 108, L140504 (2023).
Luo, Z., Lv, B., Wang, M., Wú, W. & Yao, D.-X. High-Tc superconductivity in La3Ni2O7 based on the bilayer two-orbital t-J model. npj Quantum Mater. 9, 61 (2024).
Sakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. Possible high Tc superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model. Phys. Rev. Lett. 132, 106002 (2024).
Geisler, B., Hamlin, J. J., Stewart, G. R., Hennig, R. G. & Hirschfeld, P. J. Fermi surface reconstruction in strained La3Ni2O7 on LaAlO3(001) and SrTiO3(001). Preprint at https://arxiv.org/abs/2411.14600 (2024).
Zhao, Y.-F. & Botana, A. S. Electronic structure of Ruddlesden-Popper nickelates: Strain to mimic the effects of pressure. Phys. Rev. B 111, 115154 (2025).
Lu, C., Pan, Z., Yang, F. & Wu, C. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure. Phys. Rev. Lett. 132, 146002 (2024).
Oh, H. & Zhang, Y.-H. Type-II t-J model and shared superexchange coupling from Hund’s rule in superconducting La3Ni2O7. Phys. Rev. B 108, 174511 (2023).
Cao, Y. & Yang, Y. Flat bands promoted by Hund’s rule coupling in the candidate double-layer high-temperature superconductor La3Ni2O7 under high pressure. Phys. Rev. B 109, L081105 (2024).
Qu, X.-Z. et al. Bilayer t-J-J⊥ model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7. Phys. Rev. Lett. 132, 036502 (2024).
Ouyang, Z. et al. Hund electronic correlation in La3Ni2O7 under high pressure. Phys. Rev. B 109, 115114 (2024).
Wang, Z., Jiang, K. & Zhang, F.-C. Self-doped molecular Mott insulator for bilayer high-temperature superconducting La3Ni2O7. Preprint at https://arxiv.org/abs/2412.18469 (2025).
Botana, A. S., Lee, K.-W., Norman, M. R., Pardo, V. & Pickett, W. E. Low valence nickelates: launching the nickel age of superconductivity. Front. Phys. 9, 813532 (2022).
Luo, Z., Hu, X., Wang, M., Wú, W. & Yao, D.-X. Bilayer two-orbital model of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 126001 (2023).
Fan, Z. et al. Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling. Phys. Rev. B 110, 024514 (2024).
Jiang, K., Wang, Z. & Zhang, F.-C. High-temperature superconductivity in La3Ni2O7. Chinese Phys. Lett. 41, 017402 (2024).
Jiang, R., Hou, J., Fan, Z., Lang, Z.-J. & Ku, W. Pressure driven fractionalization of ionic spins results in cupratelike high-Tc superconductivity in La3Ni2O7. Phys. Rev. Lett. 132, 126503 (2024).
Harper, F. E. & Tinkham, M. The mixed state in superconducting thin films. Phys. Rev. 172, 441–450 (1968).
Harvey, S. P. et al. Evidence for nodal superconductivity in infinite-layer nickelates. Preprint at https://arxiv.org/abs/2201.12971 (2022).
Mihaly, L., Kendziora, C., Hartge, J., Mandrus, D. & Forro, L. High-pressure cell for oxygen annealing at elevated temperatures. Rev. Sci. Instrum. 64, 2397 (1993).