• Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol. 165, 525–538 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Voulgarakis, A. & Field, R. D. Fire influences on atmospheric composition, air quality and climate. Curr. Pollut. Rep. 1, 70–81 (2015).

    Article 

    Google Scholar
     

  • Senf, F. et al. How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments. Atmos. Chem. Phys. 23, 8939–8958 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ball, G., Regier, P., González-Pinzón, R., Reale, J. & Horn, D. V. Wildfires increasingly impact western US fluvial networks. Nat. Commun. https://doi.org/10.1038/s41467-021-22747-3 (2021).

  • Byrne, B. et al. Carbon emissions from the 2023 Canadian wildfires. Nature https://doi.org/10.1038/s41586-024-07878-z (2024).

  • Pausas, J. G. & Keeley, J. E. Wildfires as an ecosystem service. Front. Ecol. Environ. 17, 289–295 (2019).

    Article 

    Google Scholar
     

  • Ardyna, M. et al. Wildfire aerosol deposition likely amplified a summertime Arctic phytoplankton bloom. Commun. Earth Environ. https://doi.org/10.1038/s43247-022-00511-9 (2022).

  • Barkley, A. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 201906091 (2019).

    Article 

    Google Scholar
     

  • Guieu, C., Bonnet, S., Wagener, T. & Loÿe-Pilot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. https://doi.org/10.1029/2005GL022962 (2005).

  • Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    Article 

    Google Scholar
     

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article 

    Google Scholar
     

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

    Article 

    Google Scholar
     

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article 
    CAS 

    Google Scholar
     

  • United Nations Department of Economic and Social Affairs, Lang, Y. & Moeini-Meybodi, H. Wildfires—a Growing Concern for Sustainable Development (UN Department of Economic and Social Affairs, 2021); https://doi.org/10.18356/27081990-111

  • Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).

    Article 

    Google Scholar
     

  • McCarty, J. L. et al. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences 18, 5053–5083 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hamilton, D. S. et al. Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the Anthropocene. Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006448 (2020).

  • Riera, R. & Pausas, J. G. Fire ecology in marine systems. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2023.12.001 (2023).

  • Hamilton, D. S. et al. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat. Commun. https://doi.org/10.1038/s41467-018-05592-9 (2018).

  • Li, F. et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perron, M. M. et al. Trace elements and nutrients in wildfire plumes to the southeast of Australia. Atmos. Res. 270, 106084 (2022).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Australian fire nourishes ocean phytoplankton bloom. Sci. Total Environ. 807, 150775 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, H. D. et al. Effects of dust storm and wildfire events on phytoplankton growth and carbon sequestration in the Tasman Sea, southeast Australia. Atmosphere https://doi.org/10.3390/atmos15030337 (2024).

  • Ito, A. Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean. Biogeosciences 8, 1679–1697 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ito, A. et al. Pyrogenic iron: the missing link to high iron solubility in aerosols. Sci. Adv. https://doi.org/10.1126/sciadv.aau7671 (2019).

  • Paris, R., Desboeufs, K. V., Formenti, P., Nava, S. & Chou, C. Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility. Atmos. Chem. Phys. 10, 4273–4282 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Myriokefalitakis, S. et al. Multiphase processes in the EC-Earth model and their relevance to the atmospheric oxalate, sulfate, and iron cycles. Geosci. Model Dev. 15, 3079–3120 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ito, A., Ye, Y., Yamamoto, A., Watanabe, M. & Aita, M. N. Responses of ocean biogeochemistry to atmospheric supply of lithogenic and pyrogenic iron-containing aerosols. Geol. Mag. 157, 741–756 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hamilton, D. S. et al. An aerosol odyssey: navigating nutrient flux changes to marine ecosystems. Elementa https://doi.org/10.1525/elementa.2023.00037 (2023).

  • Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ryan-Keogh, T. J. et al. Spatial and temporal development of phytoplankton iron stress in relation to bloom dynamics in the high-latitude North Atlantic Ocean. Limnol. Oceanogr. 58, 533–545 (2013).

    Article 

    Google Scholar
     

  • Baker, C. A., Martin, A. P., Yool, A. & Popova, E. Biological carbon pump sequestration efficiency in the North Atlantic: a leaky or a long-term sink? Glob. Biogeochem. Cycles https://doi.org/10.1029/2021GB007286 (2022).

  • Ricour, F., Guidi, L., Gehlen, M., DeVries, T. & Legendre, L. Century-scale carbon sequestration flux throughout the ocean by the biological pump. Nat. Geosci. 16, 1105–1113 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Achterberg, E. P. et al. Iron biogeochemistry in the high latitude North Atlantic Ocean. Sci. Rep. https://doi.org/10.1038/s41598-018-19472-1 (2018).

  • Siegel, D. A., Devries, T., Cetinić, I. & Bisson, K. M. Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 15, 329–356 (2023).

    Article 

    Google Scholar
     

  • Guivarch, C. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) 1841–1908 (IPCC, Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009157926.022

  • Hamilton, D. S. et al. Global warming increases fire emissions but resulting aerosol forcing remains uncertain. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-4567012/v1 (2024).

  • Hamilton, D. S. et al. Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0). Geosci. Model Dev. https://doi.org/10.5194/gmd-12-3835-2019 (2019).

  • Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Annu. Rev. Mar. Sci. 14, 303–330 (2022).

    Article 

    Google Scholar
     

  • Randerson, J., van der Werf, G., Giglio, L., Collatz, G. & Kasibhatla, P. Global Fire Emissions Database, Version 4.1 (GFEDv4) (ORNL DAAC, 2017); https://doi.org/10.3334/ORNLDAAC/1293

  • Bergas-Massó, E. et al. Pre-industrial, present and future atmospheric soluble iron deposition and the role of aerosol acidity and oxalate under CMIP6 emissions. Earth’s Future 11, e2022EF003353 (2023).

    Article 

    Google Scholar
     

  • Archibald, S., Staver, A. C. & Levin, S. A. Evolution of human-driven fire regimes in Africa. Proc. Natl Acad. Sci. USA 109, 847–852 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Janssen, T. A. et al. Extratropical forests increasingly at risk due to lightning fires. Nat. Geosci. 16, 1136–1144 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hessilt, T. D. et al. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environ. Res. Lett. 17, 054008 (2022).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Change 11, 404–410 (2021).

    Article 

    Google Scholar
     

  • Jain, P. et al. Drivers and impacts of the record-breaking 2023 wildfire season in Canada. Nat. Commun. https://doi.org/10.1038/s41467-024-51154-7 (2024).

  • Rickly, P. S. et al. Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires. Atmos. Chem. Phys. 22, 15603–15620 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Sources and atmospheric processes impacting oxalate at a suburban coastal site in Hong Kong: insights inferred from 1 year hourly measurements. J. Geophys. Res. Atmos. 120, 9772–9788 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jones, M. W. et al. Global rise in forest fire emissions linked to climate change in the extratropics. Science 386, eadl5889 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hamilton, D. S. et al. Recent (1980 to 2015) trends and variability in daily-to-interannual soluble iron deposition from dust, fire, and anthropogenic sources. Geophys. Res. Lett. https://doi.org/10.1029/2020GL089688 (2020).

  • Collins, M. et al. Emerging signals of climate change from the equator to the poles: new insights into a warming world. Front. Sci. https://doi.org/10.3389/fsci.2024.1340323 (2024).

  • Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article 

    Google Scholar
     

  • Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, P. W., Arrigo, K. R., Strzepek, R. & Van Dijken, G. L. Mapping phytoplankton iron utilization: insights into Southern Ocean supply mechanisms. J. Geophys. Res. Oceans 117, C06009 (2012).

    Article 

    Google Scholar
     

  • Okin, G. S. et al. Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus, and iron. Glob. Biogeochem. Cycles 25, GB2022 (2011).

    Article 

    Google Scholar
     

  • Rathod, S. D. et al. A mineralogy-based anthropogenic combustion-iron emission inventory. J. Geophys. Res. Atmos. 125, e2019JD032114 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Garcia, H. et al. World Ocean Atlas 2023 Vol. 4: Dissolved Inorganic Nutrients (Phosphate, Nitrate, Silicate) NOAA Atlas NESDIS 92, p.79 (National Centers for Environmental Information, 2024); https://doi.org/10.25923/39qw-7j08

  • Sanders, R. et al. The biological carbon pump in the North Atlantic. Prog. Oceanogr. 129, 200–218 (2014).

    Article 

    Google Scholar
     

  • Shutler, J. D. et al. Coccolithophore surface distributions in the North Atlantic and their modulation of the air–sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences 10, 2699–2709 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nissimov, J. I. et al. Dynamics of transparent exopolymer particle production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi. Environ. Microbiol. 20, 2880–2897 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).

    Article 

    Google Scholar
     

  • Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Diagnosing spatial biases and uncertainties in global fire emissions inventories: Indonesia as regional case study. Remote Sensing Environ. 237, 111557 (2020).

    Article 

    Google Scholar
     

  • Hua, W. et al. Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants. Atmos. Chem. Phys. 24, 6787–6807 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Carter, T. S. et al. How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmos. Chem. Phys. 20, 2073–2097 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pan, X. et al. Six global biomass burning emission datasets: intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 20, 969–994 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Spreading Like Wildfire—the Rising Threat of Extraordinary Landscape Fires: A UNEP Rapid Response Assessment (United Nations Environment Programme, 2022).

  • Yu, Y. & Ginoux, P. Enhanced dust emission following large wildfires due to vegetation disturbance. Nat. Geosci. 15, 878–884 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kok, J. F. et al. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 4, 71–86 (2023).

    Article 

    Google Scholar
     

  • Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hamilton, D. S. et al. Igniting progress: outcomes from the FLARE workshop and three challenges for the future of transdisciplinary fire science. Zenodo https://doi.org/10.5281/zenodo.12634068 (2024).

  • Muller-Karger, F. E. et al. Ocean Decade Vision 2030 White Papers—Challenge 2: Protect and Restore Ecosystems and Biodiversity Ocean Decade Series 51.2 (UNESCO-IOC, 2024); https://doi.org/10.25607/y60m-4329

  • Calewaert, J.-B. et al. Ocean Decade Vision 2030 White Papers—Challenge 8: Create a Digital Representation of the Ocean Ocean Decade Series 51.8 (UNESCO-IOC, 2024); https://doi.org/10.25607/bxhy-ra59

  • Danabasoglu, G. et al. The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article 

    Google Scholar
     

  • Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).

    Article 

    Google Scholar
     

  • Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).

    Article 

    Google Scholar
     

  • Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Article 

    Google Scholar
     

  • Lawrence, D. M. et al. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article 

    Google Scholar
     

  • van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Article 

    Google Scholar
     

  • Werf, G. R. V. D. et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

    Article 

    Google Scholar
     

  • Akagi, S. K. et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Andreae, M. O. Emission of trace gases and aerosols from biomass burning—an updated assessment. Atmos. Chem. Phys. 19, 8523–8546 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, M. S. & Meskhidze, N. Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy. Geosci. Model Dev. https://doi.org/10.5194/gmd-6-1137-2013 (2013).

  • Scanza, R. A. et al. Atmospheric processing of iron in mineral and combustion aerosols: development of an intermediate-complexity mechanism suitable for Earth system models. Atmos. Chem. Phys. 18, 14175–14196 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lin, G., Sillman, S., Penner, J. E. & Ito, A. Global modeling of SOA: the use of different mechanisms for aqueous-phase formation. Atmos. Chem. Phys. 14, 5451–5475 (2014).

    Article 

    Google Scholar
     

  • Noije, T. V. et al. EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6. Geosci. Model Dev. 14, 5637–5668 (2021).

    Article 

    Google Scholar
     

  • Huijnen, V. et al. The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev. 3, 445–473 (2010).

    Article 

    Google Scholar
     

  • Myriokefalitakis, S. et al. Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112). Geosci. Model Dev. 13, 5507–5548 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vignati, E., Wilson, J. & Stier, P. M7: an efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003JD004485 (2004).

  • Tegen, I. et al. Impact of vegetation and preferential source areas on global dust aerosol: results from a model study. J. Geophys. Res. Atmos. 107, 4576 (2002).

    Article 

    Google Scholar
     

  • Claquin, T., Schulz, M. & Balkanski, Y. J. Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. Atmos. 104, 22243–22256 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Nickovic, S., Vukovic, A., Vujadinovic, M., Djurdjevic, V. & Pejanovic, G. Technical note: high-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmos. Chem. Phys. 12, 845–855 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nickovic, S., Vukovic, A. & Vujadinovic, M. Atmospheric processing of iron carried by mineral dust. Atmos. Chem. Phys. 13, 9169–9181 (2013).

    Article 

    Google Scholar
     

  • Ito, A., Lin, G. & Penner, J. E. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides. Sci. Rep. 8, 7347 (2018).

    Article 

    Google Scholar
     

  • Hajima, T. et al. Description of the MIROC-ES2L Earth system model and evaluation of its climate-biogeochemical processes and feedbacks. Geosci. Model Dev. https://doi.org/10.5194/gmd-2019-275 (2019).

  • Ito, A. & Shi, Z. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean. Atmos. Chem. Phys. 16, 85–99 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ito, A. Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environ. Sci. Technol. Lett. 2, 70–75 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev. 9, 505–522 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zender, C. S., Bian, H. & Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD002775 (2003).

  • Journet, E., Desboeufs, K. V., Caquineau, S. & Colin, J. L. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35, 3–7 (2008).

    Article 

    Google Scholar
     

  • Ito, A. & Xu, L. Response of acid mobilization of iron-containing mineral dust to improvement of air quality projected in the future. Atmos. Chem. Phys. https://doi.org/10.5194/acp-14-3441-2014 (2014).

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Article 

    Google Scholar
     

  • O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article 

    Google Scholar
     

  • Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. https://doi.org/10.5194/gmd-11-369-2018 (2018).

  • Gates, W. L. et al. An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Am. Meteorol. Soc. 80, 29–55 (1999).

    Article 

    Google Scholar
     

  • Krishnamurthy, A., Moore, J. K., Zender, C. S. & Luo, C. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000334 (2007).

  • Krishnamurthy, A., Moore, J. K., Mahowald, N., Luo, C. & Zender, C. S. Impacts of atmospheric nutrient inputs on marine biogeochemistry. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001115 (2010).

  • Rathod, S. D. et al. Atmospheric radiative and oceanic biological productivity responses to increasing anthropogenic combustion-iron emission in the 1850–2010 period. Geophys. Res. Lett. 49, e2022GL099323 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moore, J., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Res. 2 Top. Stud. Oceanogr. 49, 463–507 (2001).

    Article 

    Google Scholar
     

  • Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).

    Article 

    Google Scholar
     

  • Yamaguchi, R. et al. Trophic level decoupling drives future changes in phytoplankton bloom phenology. Nat. Clim. Change 12, 469–476 (2022).

    Article 

    Google Scholar
     

  • Thomalla, S. J., Nicholson, S. A., Ryan-Keogh, T. J. & Smith, M. E. Widespread changes in Southern Ocean phytoplankton blooms linked to climate drivers. Nat. Clim. Change 13, 975–984 (2023).

    Article 

    Google Scholar
     

  • Ardyna, M. et al. Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. Geophys. Res. Lett. 44, 5016–5024 (2017).

    Article 

    Google Scholar
     

  • Hieronymus, J. et al. Net primary production annual maxima in the North Atlantic projected to shift in the 21st century. Biogeosciences 21, 2189–2206 (2024).

    Article 

    Google Scholar
     

  • Sasaoka, K., Chiba, S. & Saino, T. Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048299 (2011).

  • Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Article 

    Google Scholar
     

  • Bergas-Masso, E. et al. Data from: Future climate-driven fires may boost ocean productivity in the Fe-limited North Atlantic. Zenodo https://doi.org/10.5281/zenodo.14961930 (2025).

  • Mahowald, N. M. et al. Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci. 1, 245–278 (2009).

    Article 

    Google Scholar
     

  • Myriokefalitakis, S. et al. Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences 15, 6659–6684 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Prospero, J. M. Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality. J. Geophys. Res. 104, 15917–15927 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Marticorena, B. et al. Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian dust transect. Atmos. Chem. Phys. 10, 8899–8915 (2010).

    Article 
    CAS 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

  • Met Office. Cartopy: a cartographic Python library with a Matplotlib interface. http://scitools.org.uk/cartopy (2010–2015).