• Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article 
    ADS 

    Google Scholar
     

  • de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Reznikov, M., de Picciotto, R., Griffiths, T. G., Heiblum, M. & Umansky, V. Observation of quasiparticles with one-fifth of an electron’s charge. Nature 399, 238–241 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Wilczek, F. Magnetic-flux, angular-momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Leinaas, J. M. & Myrheim, J. in Fractional Statistics and Anyon Superconductivity (ed. Wilczek, F.) 132–156 (World Scientific, 1990).

  • Stern, A. Anyons and the quantum Hall effect – a pedagogical review. Ann. Phys. 323, 204–249 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chamon, C. D. C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J.-Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Han, C., Park, J., Gefen, Y. & Sim, H. S. Topological vacuum bubbles by anyon braiding. Nat. Commun. 7, 11131 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jeon, G. S., Graham, K. L. & Jain, J. K. Berry phases for composite fermions: effective magnetic field and fractional statistics. Phys. Rev. B 70, 125316 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Jain, J. K., Kivelson, S. A. & Thouless, D. J. Proposed measurement of an effective flux quantum in the fractional quantum Hall effect. Phys. Rev. Lett. 71, 3003–3006 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. M. et al. Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers. Phys. Rev. B 79, 241304 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385, 417–420 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Rosenow, B. & Simon, S. H. Telegraph noise and the Fabry-Perot quantum Hall interferometer. Phys. Rev. B 85, 201302 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Levkivskyi, I. P., Fröhlich, J. & Sukhorukov, E. V. Theory of fractional quantum Hall interferometers. Phys. Rev. B 86, 245105 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 016804 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry-Perot quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article 

    Google Scholar
     

  • Sivan, I. et al. Observation of interaction-induced modulations of a quantum Hall liquid’s area. Nat. Commun. 7, 12184 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 

    Google Scholar
     

  • Kim, J. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. 19, 1619–1626 (2024).

    Article 

    Google Scholar
     

  • Samuelson, N. L. et al. Anyonic statistics and slow quasiparticle dynamics in a graphene fractional quantum Hall interferometer. Preprint at arxiv.org/abs/2403.19628 (2024).

  • Werkmeister, T. et al. Anyon braiding and telegraph noise in a graphene interferometer. Science 388, 730–735 (2025).

  • Byers, N. & Yang, C. N. Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 7, 46 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Kivelson, S. Semiclassical theory of localized many-anyon states. Phys. Rev. Lett. 65, 3369–3372 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Feldman, D. E., Gefen, Y., Kitaev, A., Law, K. T. & Stern, A. Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Law, K. T., Feldman, D. E. & Gefen, Y. Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article 

    Google Scholar
     

  • Giovannetti, V., Taddei, F., Frustaglia, D. & Fazio, R. Multichannel architecture for electronic quantum Hall interferometry. Phys. Rev. B 77, 155320 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Deviatov, E. V., Egorov, S. V., Biasiol, G. & Sorba, L. Quantum Hall Mach-Zehnder interferometer at fractional filling factors. Europhys. Lett. 100, 67009 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Batra, N., Wei, Z., Vishveshwara, S. & Feldman, D. E. Anyonic Mach-Zehnder interferometer on a single edge of a two-dimensional electron gas. Phys. Rev. B 108, L241302 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Biswas, S., Kundu, H. K., Umansky, V. & Heiblum, M. Electron pairing of interfering interface-based edge modes. Phys. Rev. Lett. 131, 096302 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jeon, G. S., Graham, K. L. & Jain, J. K. Fractional statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 91, 036801 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Su, W. P. Statistics of the fractionally charged excitations in the quantum Hall effect. Phys. Rev. B 34, 1031–1033 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, B. Anyonic braiding in a chiral Mach-Zehnder interferometer. Zenodo https://doi.org/10.5281/zenodo.15394075 (2025).