Gleick, P. H. Roadmap for sustainable water resources in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21300–21305 (2010).
Medellín-Azuara, J. et al. Economic analysis of the 2016 California drought on agriculture. California WaterBlog https://californiawaterblog.com/2016/08/15/economic-analysis-of-the-2016-california-drought-for-agriculture/ (2016).
Prein, A. F., Holland, G. J., Rasmussen, R. M., Clark, M. P. & Tye, M. R. Running dry: the US Southwest’s drift into a drier climate state. Geophys. Res. Lett. 43, 1272–1279 (2016).
Lehner, F., Deser, C., Simpson, I. R. & Terray, L. Attributing the US Southwest’s recent shift into drier conditions. Geophys. Res. Lett. 45, 6251–6261 (2018).
Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).
Ault, T. R., Mankin, J. S., Cook, B. I. & Smerdon, J. E. Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv. 2, e1600873 (2016).
Juang, C. S. et al. Rapid growth of large forest fires drives the exponential response of annual forest‐fire area to aridity in the western United States. Geophys. Res. Lett. 49, e2021GL097131 (2022).
Jacobson, T. W. P. et al. An unexpected decline in spring atmospheric humidity in the interior southwestern United States and implications for forest fires. J. Hydrometeorol. 25, 373–390 (2024).
Lukas, J. & Payton, E. Colorado River Basin Climate and Hydrology: State of the Science (Western Water Assessment, University of Colorado Boulder, 2020).
Delworth, T. L., Zeng, F., Rosati, A., Vecchi, G. A. & Wittenberg, A. T. A link between the hiatus in global warming and North American drought. J. Clim. 28, 3834–3845 (2015).
Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D. & Pierce, D. W. Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 7, 10783 (2017).
Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).
Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).
Schmidt, D. F. & Grise, K. M. The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett. 44, 10573–10582 (2017).
Kuo, Y., Kim, H. & Lehner, F. Anthropogenic aerosols contribute to the recent decline in precipitation over the US Southwest. Geophys. Res. Lett. 50, e2023GL105389 (2023).
Carrillo, C. M. et al. Megadrought: a series of unfortunate La Niña events? JGR Atmos. 127, e2021JD036376 (2022).
Seager, R. & Hoerling, M. Atmosphere and ocean origins of North American droughts. J. Clim. 27, 4581–4606 (2014).
Allen, R. J. & Luptowitz, R. El Niño-like teleconnection increases California precipitation in response to warming. Nat. Commun. 8, 16055 (2017).
Seager, R. et al. Ocean-forcing of cool season precipitation drives ongoing and future decadal drought in southwestern North America. NPJ Clim. Atmos. Sci. 6, 141 (2023).
Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large‐scale patterns of recent sea‐surface temperature and sea‐level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).
Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).
Coats, S. & Karnauskas, K. B. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).
Dong, L. & Leung, L. R. Winter precipitation changes in California under global warming: contributions of CO2, uniform SST warming, and SST change patterns. Geophys. Res. Lett. 48, e2020GL091736 (2021).
Lehner, F. & Deser, C. Origin, importance, and predictive limits of internal climate variability. Environ. Res. Clim. 2, 023001 (2023).
Dow, W. J., Maycock, A. C., Lofverstrom, M. & Smith, C. J. The effect of anthropogenic aerosols on the Aleutian Low. J. Clim. 34, 1725–1741 (2021).
Kang, J. M., Shaw, T. A. & Sun, L. Anthropogenic aerosols have significantly weakened the regional summertime circulation in the Northern Hemisphere during the satellite era. AGU Adv. 5, e2024AV001318 (2024).
Allen, R. J., Lamarque, J., Watson‐Parris, D. & Olivié, D. Assessing California wintertime precipitation responses to various climate drivers. J. Geophys. Res. Atmos. 125, e2019JD031736 (2020).
Wang, Y., Hu, K., Huang, G. & Tao, W. Asymmetric impacts of El Niño and La Niña on the Pacific–North American teleconnection pattern: the role of subtropical jet stream. Environ. Res. Lett. 16, 114040 (2021).
Kushnir, Y., Seager, R., Ting, M., Naik, N. & Nakamura, J. Mechanisms of Tropical Atlantic SST influence on North American precipitation variability. J. Clim. 23, 5610–5628 (2010).
Xu, M., Zhan, R. & Zhao, J. Distinct responses of tropical cyclone activity to spatio-uniform and nonuniform SST warming patterns. Environ. Res. Lett. 19, 064020 (2024).
Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, 2006GL028443 (2007).
Baek, S. H. et al. Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World drought atlases. J. Clim. 30, 7141–7155 (2017).
Zeppetello, L. R. V., Zhang, L. N., Battisti, D. S. & Laguë, M. M. How much does land–atmosphere coupling influence summertime temperature variability in the western United States? J. Clim. 37, 3457–3478 (2024).
Alessi, M. J. & Rugenstein, M. Potential near‐term wetting of the southwestern United States if the eastern and Central Pacific cooling trend reverses. Geophys. Res. Lett. 51, e2024GL108292 (2024).
Persad, G. G., Samset, B. H. & Wilcox, L. J. Aerosols must be part of climate risk assessments. Nature 611, 662–664 (2022).
Qiu, W., Collins, M., Scaife, A. A. & Santoso, A. Tropical Pacific trends explain the discrepancy between observed and modelled rainfall change over the Americas. NPJ Clim. Atmos. Sci. 7, 201 (2024).
Chung, E.-S. et al. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019).
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).
Heede, U. K. & Fedorov, A. V. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Clim. Change 11, 696–703 (2021).
Hwang, Y.-T., Xie, S.-P., Chen, P.-J., Tseng, H.-Y. & Deser, C. Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proc. Natl Acad. Sci. USA 121, e2315124121 (2024).
Hartmann, D. L. The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc. Natl Acad. Sci. USA 119, e2207889119 (2022).
Kim, H., Kang, S. M., Kay, J. E. & Xie, S.-P. Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific. Proc. Natl Acad. Sci. USA 119, e2200514119 (2022).
Dong, Y., Armour, K. C., Battisti, D. S. & Blanchard-Wrigglesworth, E. Two-way teleconnections between the Southern Ocean and the tropical Pacific via a dynamic feedback. J. Clim. 35, 6267–6282 (2022).
Kohyama, T., Hartmann, D. L. & Battisti, D. S. La Niña–like mean-state response to global warming and potential oceanic roles. J. Clim. 30, 4207–4225 (2017).
Shin, S.-I. & Sardeshmukh, P. D. Critical influence of the pattern of tropical ocean warming on remote climate trends. Clim. Dyn. 36, 1577–1591 (2011).
Watanabe, M., Iwakiri, T., Dong, Y. & Kang, S. M. Two competing drivers of the recent Walker circulation trend. Geophys. Res. Lett. 50, e2023GL105332 (2023).
Chen, M. et al. Why do DJF 2023/24 upper‐level 200‐hPa geopotential height forecasts look different from the expected El Niño response? Geophys. Res. Lett. 51, e2024GL108946 (2024).
Schmidt, D. F. & Grise, K. M. Impacts of subtropical highs on summertime precipitation in North America. J. Geophys. Res. Atmos. 124, 11188–11204 (2019).
Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Schneider, U., Hänsel, S., Finger, P., Rustemeier, E. & Ziese, M. GPCC Full Data Monthly Product Version 2022 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historical Data Global Precipitation Climatology Centre (GPCC, http://gpcc.dwd.de/) at Deutscher Wetterdienst https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_100 (2022)
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
Rohde, R. A. & Hausfather, Z. The Berkeley Earth Land/Ocean Temperature Record. Earth Syst. Sci. Data 12, 3469–3479 (2020).
Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dynam. 12, 1393–1411 (2021).
Simpson, I. R. et al. The CESM2 single-forcing large ensemble and comparison to CESM1: implications for experimental design. J. Clim. 36, 5687–5711 (2023).
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).
Cook, B. I. et al. Uncertainties, limits, and benefits of climate change mitigation for soil moisture drought in southwestern North America. Earths Future 9, e2021EF002014 (2021).
Ziehn, T. et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Shin, S.-I., Sardeshmukh, P. D., Newman, M., Penland, C. & Alexander, M. A. Impact of annual cycle on ENSO variability and predictability. J. Clim. 34, 171–193 (2021).
Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).
Penland, C. & Matrosova, L. Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Clim. 19, 5796–5815 (2006).
DeRepentigny, P. Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. Sci. Adv. 8, eabo2405 (2022).
Fasullo, J. T. et al. Spurious late historical‐era warming in CESM2 driven by prescribed biomass burning emissions. Geophys. Res. Lett. 49, e2021GL097420 (2022).
Yang, W., Hsieh, T.-L. & Vecchi, G. A. Hurricane annual cycle controlled by both seeds and genesis probability. Proc. Natl Acad. Sci. USA 118, e2108397118 (2021).
Hsieh, T., Yang, W., Vecchi, G. A. & Zhao, M. Model spread in the tropical cyclone frequency and seed propensity index across global warming and ENSO‐like perturbations. Geophys. Res. Lett. 49, e2021GL097157 (2022).
Elson, P. et al. SciTools/cartopy v.0.21.1. Zenodo https://doi.org/10.5281/zenodo.7430317 (2022).
Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com
Kuo, Y.-N. & Shin, S.-I. ynkuo/kuo24_lim-toga_swus: v2. Zenodo https://doi.org/10.5281/zenodo.14990892 (2025).