• Gleick, P. H. Roadmap for sustainable water resources in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21300–21305 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Medellín-Azuara, J. et al. Economic analysis of the 2016 California drought on agriculture. California WaterBlog https://californiawaterblog.com/2016/08/15/economic-analysis-of-the-2016-california-drought-for-agriculture/ (2016).

  • Prein, A. F., Holland, G. J., Rasmussen, R. M., Clark, M. P. & Tye, M. R. Running dry: the US Southwest’s drift into a drier climate state. Geophys. Res. Lett. 43, 1272–1279 (2016).

    Article 

    Google Scholar
     

  • Lehner, F., Deser, C., Simpson, I. R. & Terray, L. Attributing the US Southwest’s recent shift into drier conditions. Geophys. Res. Lett. 45, 6251–6261 (2018).

    Article 

    Google Scholar
     

  • Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ault, T. R., Mankin, J. S., Cook, B. I. & Smerdon, J. E. Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv. 2, e1600873 (2016).

    Article 

    Google Scholar
     

  • Juang, C. S. et al. Rapid growth of large forest fires drives the exponential response of annual forest‐fire area to aridity in the western United States. Geophys. Res. Lett. 49, e2021GL097131 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jacobson, T. W. P. et al. An unexpected decline in spring atmospheric humidity in the interior southwestern United States and implications for forest fires. J. Hydrometeorol. 25, 373–390 (2024).

    Article 

    Google Scholar
     

  • Lukas, J. & Payton, E. Colorado River Basin Climate and Hydrology: State of the Science (Western Water Assessment, University of Colorado Boulder, 2020).

  • Delworth, T. L., Zeng, F., Rosati, A., Vecchi, G. A. & Wittenberg, A. T. A link between the hiatus in global warming and North American drought. J. Clim. 28, 3834–3845 (2015).

    Article 

    Google Scholar
     

  • Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D. & Pierce, D. W. Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 7, 10783 (2017).

    Article 

    Google Scholar
     

  • Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).

    Article 

    Google Scholar
     

  • Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, D. F. & Grise, K. M. The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett. 44, 10573–10582 (2017).

    Article 

    Google Scholar
     

  • Kuo, Y., Kim, H. & Lehner, F. Anthropogenic aerosols contribute to the recent decline in precipitation over the US Southwest. Geophys. Res. Lett. 50, e2023GL105389 (2023).

  • Carrillo, C. M. et al. Megadrought: a series of unfortunate La Niña events? JGR Atmos. 127, e2021JD036376 (2022).

    Article 

    Google Scholar
     

  • Seager, R. & Hoerling, M. Atmosphere and ocean origins of North American droughts. J. Clim. 27, 4581–4606 (2014).

    Article 

    Google Scholar
     

  • Allen, R. J. & Luptowitz, R. El Niño-like teleconnection increases California precipitation in response to warming. Nat. Commun. 8, 16055 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Seager, R. et al. Ocean-forcing of cool season precipitation drives ongoing and future decadal drought in southwestern North America. NPJ Clim. Atmos. Sci. 6, 141 (2023).

    Article 

    Google Scholar
     

  • Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large‐scale patterns of recent sea‐surface temperature and sea‐level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).

    Article 

    Google Scholar
     

  • Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).

    Article 

    Google Scholar
     

  • Coats, S. & Karnauskas, K. B. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article 

    Google Scholar
     

  • Dong, L. & Leung, L. R. Winter precipitation changes in California under global warming: contributions of CO2, uniform SST warming, and SST change patterns. Geophys. Res. Lett. 48, e2020GL091736 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lehner, F. & Deser, C. Origin, importance, and predictive limits of internal climate variability. Environ. Res. Clim. 2, 023001 (2023).

    Article 

    Google Scholar
     

  • Dow, W. J., Maycock, A. C., Lofverstrom, M. & Smith, C. J. The effect of anthropogenic aerosols on the Aleutian Low. J. Clim. 34, 1725–1741 (2021).

    Article 

    Google Scholar
     

  • Kang, J. M., Shaw, T. A. & Sun, L. Anthropogenic aerosols have significantly weakened the regional summertime circulation in the Northern Hemisphere during the satellite era. AGU Adv. 5, e2024AV001318 (2024).

    Article 

    Google Scholar
     

  • Allen, R. J., Lamarque, J., Watson‐Parris, D. & Olivié, D. Assessing California wintertime precipitation responses to various climate drivers. J. Geophys. Res. Atmos. 125, e2019JD031736 (2020).

    Article 

    Google Scholar
     

  • Wang, Y., Hu, K., Huang, G. & Tao, W. Asymmetric impacts of El Niño and La Niña on the Pacific–North American teleconnection pattern: the role of subtropical jet stream. Environ. Res. Lett. 16, 114040 (2021).

    Article 

    Google Scholar
     

  • Kushnir, Y., Seager, R., Ting, M., Naik, N. & Nakamura, J. Mechanisms of Tropical Atlantic SST influence on North American precipitation variability. J. Clim. 23, 5610–5628 (2010).

    Article 

    Google Scholar
     

  • Xu, M., Zhan, R. & Zhao, J. Distinct responses of tropical cyclone activity to spatio-uniform and nonuniform SST warming patterns. Environ. Res. Lett. 19, 064020 (2024).

    Article 

    Google Scholar
     

  • Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, 2006GL028443 (2007).

    Article 

    Google Scholar
     

  • Baek, S. H. et al. Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World drought atlases. J. Clim. 30, 7141–7155 (2017).

    Article 

    Google Scholar
     

  • Zeppetello, L. R. V., Zhang, L. N., Battisti, D. S. & Laguë, M. M. How much does land–atmosphere coupling influence summertime temperature variability in the western United States? J. Clim. 37, 3457–3478 (2024).

    Article 

    Google Scholar
     

  • Alessi, M. J. & Rugenstein, M. Potential near‐term wetting of the southwestern United States if the eastern and Central Pacific cooling trend reverses. Geophys. Res. Lett. 51, e2024GL108292 (2024).

    Article 

    Google Scholar
     

  • Persad, G. G., Samset, B. H. & Wilcox, L. J. Aerosols must be part of climate risk assessments. Nature 611, 662–664 (2022).

    Article 

    Google Scholar
     

  • Qiu, W., Collins, M., Scaife, A. A. & Santoso, A. Tropical Pacific trends explain the discrepancy between observed and modelled rainfall change over the Americas. NPJ Clim. Atmos. Sci. 7, 201 (2024).

    Article 

    Google Scholar
     

  • Chung, E.-S. et al. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019).

    Article 

    Google Scholar
     

  • Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article 

    Google Scholar
     

  • Heede, U. K. & Fedorov, A. V. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Clim. Change 11, 696–703 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, Y.-T., Xie, S.-P., Chen, P.-J., Tseng, H.-Y. & Deser, C. Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proc. Natl Acad. Sci. USA 121, e2315124121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hartmann, D. L. The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc. Natl Acad. Sci. USA 119, e2207889119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H., Kang, S. M., Kay, J. E. & Xie, S.-P. Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific. Proc. Natl Acad. Sci. USA 119, e2200514119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Y., Armour, K. C., Battisti, D. S. & Blanchard-Wrigglesworth, E. Two-way teleconnections between the Southern Ocean and the tropical Pacific via a dynamic feedback. J. Clim. 35, 6267–6282 (2022).

    Article 

    Google Scholar
     

  • Kohyama, T., Hartmann, D. L. & Battisti, D. S. La Niña–like mean-state response to global warming and potential oceanic roles. J. Clim. 30, 4207–4225 (2017).

    Article 

    Google Scholar
     

  • Shin, S.-I. & Sardeshmukh, P. D. Critical influence of the pattern of tropical ocean warming on remote climate trends. Clim. Dyn. 36, 1577–1591 (2011).

    Article 

    Google Scholar
     

  • Watanabe, M., Iwakiri, T., Dong, Y. & Kang, S. M. Two competing drivers of the recent Walker circulation trend. Geophys. Res. Lett. 50, e2023GL105332 (2023).

    Article 

    Google Scholar
     

  • Chen, M. et al. Why do DJF 2023/24 upper‐level 200‐hPa geopotential height forecasts look different from the expected El Niño response? Geophys. Res. Lett. 51, e2024GL108946 (2024).

    Article 

    Google Scholar
     

  • Schmidt, D. F. & Grise, K. M. Impacts of subtropical highs on summertime precipitation in North America. J. Geophys. Res. Atmos. 124, 11188–11204 (2019).

    Article 

    Google Scholar
     

  • Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 

    Google Scholar
     

  • Schneider, U., Hänsel, S., Finger, P., Rustemeier, E. & Ziese, M. GPCC Full Data Monthly Product Version 2022 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historical Data Global Precipitation Climatology Centre (GPCC, http://gpcc.dwd.de/) at Deutscher Wetterdienst https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_100 (2022)

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article 

    Google Scholar
     

  • Rohde, R. A. & Hausfather, Z. The Berkeley Earth Land/Ocean Temperature Record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

    Article 

    Google Scholar
     

  • Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dynam. 12, 1393–1411 (2021).

    Article 

    Google Scholar
     

  • Simpson, I. R. et al. The CESM2 single-forcing large ensemble and comparison to CESM1: implications for experimental design. J. Clim. 36, 5687–5711 (2023).

    Article 

    Google Scholar
     

  • Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article 

    Google Scholar
     

  • Cook, B. I. et al. Uncertainties, limits, and benefits of climate change mitigation for soil moisture drought in southwestern North America. Earths Future 9, e2021EF002014 (2021).

    Article 

    Google Scholar
     

  • Ziehn, T. et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).

    Article 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar
     

  • Shin, S.-I., Sardeshmukh, P. D., Newman, M., Penland, C. & Alexander, M. A. Impact of annual cycle on ENSO variability and predictability. J. Clim. 34, 171–193 (2021).

    Article 

    Google Scholar
     

  • Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).

    Article 

    Google Scholar
     

  • Penland, C. & Matrosova, L. Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Clim. 19, 5796–5815 (2006).

    Article 

    Google Scholar
     

  • DeRepentigny, P. Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. Sci. Adv. 8, eabo2405 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fasullo, J. T. et al. Spurious late historical‐era warming in CESM2 driven by prescribed biomass burning emissions. Geophys. Res. Lett. 49, e2021GL097420 (2022).

    Article 

    Google Scholar
     

  • Yang, W., Hsieh, T.-L. & Vecchi, G. A. Hurricane annual cycle controlled by both seeds and genesis probability. Proc. Natl Acad. Sci. USA 118, e2108397118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hsieh, T., Yang, W., Vecchi, G. A. & Zhao, M. Model spread in the tropical cyclone frequency and seed propensity index across global warming and ENSO‐like perturbations. Geophys. Res. Lett. 49, e2021GL097157 (2022).

    Article 

    Google Scholar
     

  • Elson, P. et al. SciTools/cartopy v.0.21.1. Zenodo https://doi.org/10.5281/zenodo.7430317 (2022).

  • Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com

  • Kuo, Y.-N. & Shin, S.-I. ynkuo/kuo24_lim-toga_swus: v2. Zenodo https://doi.org/10.5281/zenodo.14990892 (2025).