• Pryhuber, G. S. et al. Prematurity and respiratory outcomes program (PROP): study protocol of a prospective multicenter study of respiratory outcomes of preterm infants in the United States. BMC Pediatrics 15, 37 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, E. F. et al. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013–2018. JAMA 327, 248–263 (2022).

    PubMed 

    Google Scholar
     

  • Budinger, G. R. et al. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am. J. Respir. Crit. Care Med. 183, 1043–1054 (2011).

    PubMed 

    Google Scholar
     

  • Thebaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers 5, 78 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collaco, J. M., Eldredge, L. C. & McGrath-Morrow, S. A. Long-term pulmonary outcomes in BPD throughout the life course. J. Perinatal. 10.1038/s41372-024-01957-9 (2024).

  • Hilgendorff, A. et al. Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants. Genes Immun. 8, 671–677 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartalesi, B. et al. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur. Respir. J. 25, 15–22 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • De Simone, M. et al. Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice. BMC Genomics 17, 351 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitehead, G. S., Burch, L. H., Berman, K. G., Piantadosi, C. A. & Schwartz, D. A. Genetic basis of murine responses to hyperoxia-induced lung injury. Immunogenetics 58, 793–804 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sajti, E. et al. Transcriptomic and epigenetic mechanisms underlying myeloid diversity in the lung. Nat. Immunol. 21, 221–231 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X. et al. A census of the lung: CellCards from LungMAP. Dev. Cell 57, 112–145 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cantu, A. et al. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 324, L5–L31 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Hurskainen, M. et al. Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat. Commun. 12, 1565 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulland, T. K. & Colonna, M. TREM2 – a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Sharif, O. et al. The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia. PLoS Pathog. 10, e1004167 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, K. et al. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J. Exp. Med. 212, 681–697 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bucova, M. et al. Diagnostic value of TREM-1 and TREM-2 expression in bronchoalveolar lavage fluid in sarcoidosis and other lung diseases. Bratisl. Lek. Listy 116, 707–713 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tiono, J. et al. Mouse genetic background impacts susceptibility to hyperoxia-driven perturbations to lung maturation. Pediatr. Pulmonol. 54, 1060–1077 (2019).

    PubMed 

    Google Scholar
     

  • Rincon, M. & Irvin, C. G. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J. Biol. Sci. 8, 1281–1290 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckle, T. et al. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J. Immunol. 178, 8127–8137 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Bancalari, E. & Jain, D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology 115, 384–391 (2019).

    PubMed 

    Google Scholar
     

  • Leek, C. et al. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol. 75, 103296 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).


    Google Scholar
     

  • Wolf, D. & Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, K. C., Park, H. W. & Guan, K. L. Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem. Sci. 42, 862–872 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Reilly, M. A. DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L291–L305 (2001).

    PubMed 

    Google Scholar
     

  • Chao, C., Saito, S., Anderson, C. W., Appella, E. & Xu, Y. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc. Natl Acad. Sci. USA 97, 11936–11941 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suchankova, M. et al. Triggering receptor expressed on myeloid cells-1 and 2 in bronchoalveolar lavage fluid in pulmonary sarcoidosis. Respirology 18, 455–462 (2013).

    PubMed 

    Google Scholar
     

  • Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Kober, D. L. & Brett, T. J. TREM2-ligand interactions in health and disease. J. Mol. Biol. 429, 1607–1629 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, G. M. & O’Brodovich, H. M. Progress in understanding the genetics of bronchopulmonary dysplasia. Semin. Perinatol. 37, 85–93 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blume, F. et al. Verification of immunology-related genetic associations in BPD supports ABCA3 and five other genes. Pediatr. Res. 92, 190–198 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ambalavanan, N. et al. Integrated genomic analyses in bronchopulmonary dysplasia. J. Pediatrics 166, 531–537 e513 (2015).

    CAS 

    Google Scholar
     

  • Wang, H. et al. A genome-wide association study (GWAS) for bronchopulmonary dysplasia. Pediatrics 132, 290–297 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahlman, M. et al. Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene. Sci. Rep. 7, 9271 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavrili, S. et al. Association of C609T-inborn polymorphism of NAD(P)H: quinone oxidoreductase 1 with the risk of bronchopulmonary dysplasia in preterm neonates. Am. J. Perinatol. 33, 535–539 (2016).

    PubMed 

    Google Scholar
     

  • Sampath, V. et al. Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr. Res. 77, 477–483 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Scaffa, A. et al. Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biol. 48, 102091 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, M. et al. Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat. Commun. 10, 37 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutelle, A. M. & Attardi, L. D. p53 and tumor suppression: it takes a network. Trends Cell Biol. 31, 298–310 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowen, M. E. & Attardi, L. D. The role of p53 in developmental syndromes. J. Mol. Cell. Biol. 11, 200–211 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Reilly, M. A., Staversky, R. J., Stripp, B. R. & Finkelstein, J. N. Exposure to hyperoxia induces p53 expression in mouse lung epithelium. Am. J. Respir. Cell Mol. Biol. 18, 43–50 (1998).

    PubMed 

    Google Scholar
     

  • Yao, H. et al. Timing and cell specificity of senescence drives postnatal lung development and injury. Nat. Commun. 14, 273 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowen, M. E. et al. The spatiotemporal pattern and intensity of p53 activation dictates phenotypic diversity in p53-driven developmental syndromes. Dev. Cell 50, 212–228 e216 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levine, A. J. P53 and the immune response: 40 years of exploration—a plan for the future. Int. J. Mol. Sci. 21, 541 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werness, B. A., Levine, A. J. & Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Rivas, C., Aaronson, S. A. & Munoz-Fontela, C. Dual role of p53 in innate antiviral immunity. Viruses 2, 298–313 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menendez, D. et al. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet. 7, e1001360 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascharak, S. et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 372, eaba2374 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascharak, S. et al. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep. Med. 4, 101248 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruifrok, A. C., Katz, R. L. & Johnston, D. A. Comparison of quantification of histochemical staining by hue-saturation-intensity (HSI) transformation and color-deconvolution. Appl. Immunohistochem. Mol. Morphol. 11, 85–91 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruifrok, A. C. & Johnston, D. A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. & Mao, Q. Probabilistic dimensionality reduction via structure learning. IEEE Trans. Pattern Anal. Mach. Intell. 41, 205–219 (2019).

    PubMed 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abe, Y. et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun. 9, 1566 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, S. et al. Transcription elongation can affect genome 3D structure. Cell 174, 1522–1536.e1522 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar