• Li, S., Xu, L. D. & Zhao, S. The internet of things: a survey. Inf. Syst. Front. 17, 243–259 (2015).


    Google Scholar
     

  • Das, S. & Mao, E. The global energy footprint of information and communication technology electronics in connected internet-of-things devices. Sustain. Energy Grids Netw. 24, 100408 (2020).


    Google Scholar
     

  • O’Leary, D. E. Artificial intelligence and big data. IEEE Intell. Syst. 28, 96–99 (2013).


    Google Scholar
     

  • Nahavandi, D., Alizadehsani, R., Khosravi, A. & Acharya, U. R. Application of artificial intelligence in wearable devices: opportunities and challenges. Comput. Methods Prog. Biomed. 213, 106541 (2022).


    Google Scholar
     

  • Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).


    Google Scholar
     

  • Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 22501 (2022).


    Google Scholar
     

  • Imran, M. A., Zoha, A., Zhang, L. & Abbasi, Q. H. Grand challenges in IoT and sensor networks. Front. Commun. Netw. 1, 619452 (2020).


    Google Scholar
     

  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).


    Google Scholar
     

  • Akarvardar, K. & Wong, H.-S. P. Technology prospects for data-intensive computing. Proc. IEEE 111, 92–112 (2023).


    Google Scholar
     

  • Wan, T. et al. In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2023).


    Google Scholar
     

  • Chen, C., Zhou, Y., Tong, L., Pang, Y. & Xu, J. Emerging 2D ferroelectric devices for In-sensor and In-memory computing. Adv. Mater. 2400332. https://doi.org/10.1002/adma.202400332 (2024).

  • Shi, Y., Duong, N. T. & Ang, K.-W. Emerging 2D materials hardware for in-sensor computing. Nanoscale Horiz. 10, 205–229 (2025).


    Google Scholar
     

  • Hassan, J. Z. et al. 2D material-based sensing devices: an update. J. Mater. Chem. A 11, 6016–6063 (2023).


    Google Scholar
     

  • Chen, M. et al. Selective and quasi-continuous switching of ferroelectric Chern insulator devices for neuromorphic computing. Nat. Nanotechnol. 19, 962–969 (2024).


    Google Scholar
     

  • Zhu, K. et al. Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023).

    ADS 

    Google Scholar
     

  • Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    ADS 

    Google Scholar
     

  • Jayachandran, D., Sakib, N. U. & Das, S. 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1, 300–316 (2024).


    Google Scholar
     

  • An, J. et al. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater. 32, 2110119 (2022).


    Google Scholar
     

  • Li, Z. et al. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 15, 7275 (2024).


    Google Scholar
     

  • Zhang, B., Lu, P., Tabrizian, R., Feng, P. X.-L. & Wu, Y. 2D Magnetic heterostructures: spintronics and quantum future. npj Spintron. 2, 6 (2024).


    Google Scholar
     

  • Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).

    ADS 

    Google Scholar
     

  • Shin, Y. et al. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv. Sci. 9, 2105423 (2022).


    Google Scholar
     

  • Huang, J. et al. A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 126, 109684 (2024).


    Google Scholar
     

  • Subbulakshmi Radhakrishnan, S., Sebastian, A., Oberoi, A., Das, S. & Das, S. A biomimetic neural encoder for spiking neural network. Nat. Commun. 12, 2143 (2021).

    ADS 

    Google Scholar
     

  • Kostarelos, K., Vincent, M., Hebert, C. & Garrido, J. A. Graphene in the design and engineering of next-generation neural interfaces. Adv. Mater. 29, 1700909 (2017).

  • Faisal, S. N. & Iacopi, F. Thin-film electrodes based on two-dimensional nanomaterials for neural interfaces. ACS Appl. Nano Mater. 5, 10137–10150 (2022).


    Google Scholar
     

  • Yang, Z. et al. Seizure detection using dynamic memristor-based reservoir computing and leaky integrate-and-fire neuron for post-processing. APL Mach. Learn. 1, 046123 (2023).

  • Farronato, M. et al. Seizure detection via reservoir computing in MoS2-based charge trap memory devices. Sci. Adv. 11, eadr3241 (2025).

  • Tyagi, D. et al. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12, 3535–3559 (2020).


    Google Scholar
     

  • Kumar Gupta, V., Choudhary, K. & Kumar, S. Two-dimensional materials-based plasmonic sensors for health monitoring systems—a review. IEEE Sens. J. 23, 11324–11335 (2023).

    ADS 

    Google Scholar
     

  • Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).


    Google Scholar
     

  • Meng, J. et al. Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22, 81–89 (2022).

    ADS 

    Google Scholar
     

  • Das, B. et al. Artificial visual systems fabricated with ferroelectric van der waals heterostructure for in-memory computing applications. ACS Nano 17, 21297–21306 (2023).


    Google Scholar
     

  • Wang, P. et al. Integrated In-memory sensor and computing of artificial vision based on full-vdW optoelectronic ferroelectric field-effect transistor. Adv. Sci. 11, 2305679 (2024).


    Google Scholar
     

  • Ci, W. et al. All-In-one optoelectronic neuristor based on full-vdW two-terminal ferroelectric p–n heterojunction. Adv. Funct. Mater. 34, 2305822 (2024).


    Google Scholar
     

  • Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron 5, 761–773 (2022).


    Google Scholar
     

  • Zha, J. et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv. Mater. 35, 2211598 (2023).


    Google Scholar
     

  • Wu, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023).

    ADS 

    Google Scholar
     

  • Zeng, J. et al. Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 34, 2313010 (2024).


    Google Scholar
     

  • Li, X. et al. Multi-functional platform for in-memory computing and sensing based on 2D ferroelectric semiconductor α-In2 Se3. Adv. Funct. Mater. 34, 2306486 (2024).


    Google Scholar
     

  • Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

    ADS 

    Google Scholar
     

  • Choi, C. et al. Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron 5, 386–393 (2022).


    Google Scholar
     

  • Leblanc, C., Song, S. & Jariwala, D. 2D ferroelectrics and ferroelectrics with 2D: materials and device prospects. Curr. Opin. Solid State Mater. Sci. 32, 101178 (2024).


    Google Scholar
     

  • Wang, H. et al. The evolution of 2D vdW ferroelectric materials: theoretical prediction, experiment confirmation, applications. Appl. Phys. Rev. 11, 21330 (2024).


    Google Scholar
     

  • Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    ADS 

    Google Scholar
     

  • Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In 2 Se 3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).


    Google Scholar
     

  • Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).

    ADS 

    Google Scholar
     

  • Chang, K. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590–6597 (2020).

    ADS 

    Google Scholar
     

  • Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    ADS 

    Google Scholar
     

  • Du, J. et al. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy 89, 106439 (2021).


    Google Scholar
     

  • Sui, F. et al. Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun. 14, 36 (2023).

    ADS 

    Google Scholar
     

  • Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    ADS 

    Google Scholar
     

  • Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    ADS 

    Google Scholar
     

  • Dutta, D., Mukherjee, S., Uzhansky, M. & Koren, E. Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3. npj 2D Mater. Appl 5, 81 (2021).


    Google Scholar
     

  • Li, X., Li, S., Tang, B., Liao, J. & Chen, Q. A Vis-SWIR photonic synapse with low power consumption based on WSe2 /In2 Se3 ferroelectric heterostructure. Adv. Electron. Mater. 8, 2200343 (2022).


    Google Scholar
     

  • Zhou, J. et al. Multimodal 2D ferroelectric transistor with integrated perception-and-computing-in-memory functions for reservoir computing. Nano Lett. acs.nanolett.4c05071. https://doi.org/10.1021/acs.nanolett.4c05071 (2024).

  • Duong, N. T. et al. Coupled ferroelectric-photonic memory in a retinomorphic hardware for In-sensor computing. Adv. Sci. 11, 2303447 (2024).


    Google Scholar
     

  • Wang, X. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021).

    ADS 

    Google Scholar
     

  • Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).


    Google Scholar
     

  • Jin, X., Zhang, Y.-Y. & Du, S. Recent progress in the theoretical design of two-dimensional ferroelectric materials. Fundam. Res. 3, 322–331 (2023).


    Google Scholar
     

  • Yu, J. et al. Photoinduced deterministic polarization switching in CuInP2 S6 for multifunctional optoelectronic logic gates. Nano Lett. acs.nanolett.4c05777. https://doi.org/10.1021/acs.nanolett.4c05777 (2025).

  • Zhang, J. et al. Ultrafast polarization switching via laser-activated ionic migration in ferroelectric CuInP2S6. Phys. Rev. B 111, 104111 (2025).

  • Guan, Z., Ni, S. & Hu, S. Tunable electronic and optical properties of monolayer and multilayer janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. J. Phys. Chem. C. 122, 6209–6216 (2018).


    Google Scholar
     

  • Yin, W.-J. et al. Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater. Adv. 2, 7543–7558 (2021).


    Google Scholar
     

  • Tong, L. et al. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

    ADS 

    Google Scholar
     

  • Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022).

    ADS 

    Google Scholar
     

  • Hsain, H. A. et al. Many routes to ferroelectric HfO2: a review of current deposition methods. J. Vac. Sci. Technol. A 40 (2022).

  • Xiang, H. et al. Enhancing memory window efficiency of ferroelectric transistor for neuromorphic computing via two-dimensional materials integration. Adv. Funct. Mater. 33, 2304657 (2023).


    Google Scholar
     

  • Chien, Y. et al. A MoS2 hafnium oxide based ferroelectric encoder for temporal-efficient spiking neural network. Adv. Mater. 35, 2204949 (2023).


    Google Scholar
     

  • Wu, X., Gao, S., Xiao, L. & Wang, J. WSe2 negative capacitance field-effect transistor for biosensing applications. ACS Appl. Mater. Interfaces 16, 42597–42607 (2024).


    Google Scholar
     

  • Ning, H. et al. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493–500 (2023).

    ADS 

    Google Scholar
     

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    ADS 

    Google Scholar
     

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    ADS 

    Google Scholar
     

  • McCreary, K. M. et al. Stacking-dependent optical properties in bilayer WSe 2. Nanoscale 14, 147–156 (2022).


    Google Scholar
     

  • Yang, T. H. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat. Electron. 7, 29–38 (2023).

    ADS 

    Google Scholar
     

  • Yasuda, K. et al. Ultrafast high-endurance memory based on sliding ferroelectrics. Science 385, 53–56 (2024).


    Google Scholar
     

  • Yan, X. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023).

    ADS 

    Google Scholar
     

  • Zheng, Z. et al. Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity. Preprint at https://doi.org/10.48550/arXiv.2306.03922 (2023).

  • Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    ADS 

    Google Scholar
     

  • Zhai, Y. et al. Reconfigurable 2D-ferroelectric platform for neuromorphic computing. Appl. Phys. Rev. 10, 11408 (2023).


    Google Scholar
     

  • Memristors and Memristive Systems. https://doi.org/10.1007/978-1-4614-9068-5 (Springer New York, 2014).

  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    ADS 

    Google Scholar
     

  • Shan, X. et al. Emerging multimodal memristors for biorealistic neuromorphic applications. Mater. Futures 3, 12701 (2024).


    Google Scholar
     

  • Thakkar, P., Gosai, J., Gogoi, H. J. & Solanki, A. From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications. J. Mater. Chem. C. 12, 1583–1608 (2024).


    Google Scholar
     

  • Zhao, T. et al. Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3 C2 T x MXenes floating gate. Adv. Funct. Mater. 31, 2106000 (2021).


    Google Scholar
     

  • Wang, Y. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).


    Google Scholar
     

  • Ahmed, T. et al. Optically stimulated artificial synapse based on layered black phosphorus. Small 15, 1900966 (2019).


    Google Scholar
     

  • He, H. et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14, 1800079 (2018).


    Google Scholar
     

  • Cheng, Y. et al. Vertical 0D-perovskite/2D-MoS2 van der waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 16, 2005217 (2020).


    Google Scholar
     

  • Wang, W. et al. Artificial optoelectronic synapses based on TiN x O2– x /MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31, 2101201 (2021).


    Google Scholar
     

  • Sahu, M. C., Sahoo, S., Mallik, S. K., Jena, A. K. & Sahoo, S. Multifunctional 2D MoS2 optoelectronic artificial synapse with integrated arithmetic and reconfigurable logic operations for In-memory neuromorphic computing applications. Adv. Mater. Technol. 8, 2201125 (2023).


    Google Scholar
     

  • Dodda, A., Trainor, N., Redwing, Joan, M. & Das, S. All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).

    ADS 

    Google Scholar
     

  • Li, G. et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 13, 1729 (2022).

    ADS 

    Google Scholar
     

  • Zha, J. et al. A 2D heterostructure-based multifunctional floating gate memory device for multimodal reservoir computing. Adv. Mater. 36, 2308502 (2024).


    Google Scholar
     

  • Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

    ADS 

    Google Scholar
     

  • Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).

    ADS 

    Google Scholar
     

  • Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).


    Google Scholar
     

  • Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    ADS 

    Google Scholar
     

  • Song, M.-K. et al. Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano 17, 11994–12039 (2023).


    Google Scholar
     

  • Jang, H. et al. Flexible neuromorphic electronics for wearable near-sensor and In-sensor computing systems. Adv. Mater. 37, 2416073 (2025).


    Google Scholar
     

  • Van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).


    Google Scholar
     

  • Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    ADS 

    Google Scholar
     

  • Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    ADS 

    Google Scholar
     

  • Hirata, T. & Ohuchi, F. S. Temperature dependence of the Raman spectra of 1T-TaS2. Solid State Commun. 117, 361–364 (2001).

    ADS 

    Google Scholar
     

  • Samnakay, R. et al. Zone-folded phonons and the commensurate−incommensurate charge-density-wave transition in 1T‑TaSe2 thin films. Nano Lett. 15, 2965–2973 (2015).

  • Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

    ADS 

    Google Scholar
     

  • Sayers, C. J. et al. Correlation between crystal purity and the charge density wave in 1 T – VSe 2. Phys. Rev. Mater. 4, 25002 (2020).


    Google Scholar
     

  • Hossain, M. et al. Recent advances in two-dimensional materials with charge density waves: synthesis, characterization and applications. Crystals 7, 298 (2017).


    Google Scholar
     

  • Vaskivskyi, I. et al. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7, 11442 (2016).

    ADS 

    Google Scholar
     

  • Khitun, A., Liu, G. & Balandin, A. A. Two-dimensional oscillatory neural network based on room-temperature charge-density-wave devices. IEEE Trans. Nanotechnol. 16, 860–867 (2017).

    ADS 

    Google Scholar
     

  • Mihailovic, D. et al. Ultrafast non-thermal and thermal switching in charge configuration memory devices based on 1T-TaS2. Appl. Phys. Lett. 119, 13106 (2021).


    Google Scholar
     

  • Liu, H. et al. A tantalum disulfide charge-density-wave stochastic artificial neuron for emulating neural statistical properties. Nano Lett. 21, 3465–3472 (2021).

    ADS 

    Google Scholar
     

  • Li, W. & Naik, G. V. Light-induced reorganization of charge density wave stacking in 1T-TaS2. Appl. Phys. Lett. 118, 253104 (2021).

    ADS 

    Google Scholar
     

  • Behera, S. K., Ahalawat, M. & Ramamurthy, P. C. Reconstructed electronic structure in 2D vdW 1T-Ta$S_2$ for quantum sensing and information science. Preprint at https://doi.org/10.48550/arXiv.2404.14932 (2024).

  • Huang, W. C.-W. et al. Ultrafast optical switching to a heterochiral charge-density wave state. Preprint at https://doi.org/10.48550/arXiv.2405.20872 (2024).

  • Tilak, N. et al. Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure. Nat. Commun. 15, 8056 (2024).


    Google Scholar
     

  • Brown, J. O., Guo, T., Pasqualetti, F. & Balandin, A. A. Charge-density-wave oscillator networks for solving combinatorial optimization problems. Preprint at https://doi.org/10.48550/arXiv.2503.06355 (2025).

  • Lv, B. Q. et al. Unconventional hysteretic transition in a charge density wave. Phys. Rev. Lett. 128, 36401 (2022).

    ADS 

    Google Scholar
     

  • Wu, D. et al. Layered semiconductor EuTe 4 with charge density wave order in square tellurium sheets. Phys. Rev. Mater. 3, 24002 (2019).


    Google Scholar
     

  • Zhang, Q. Q. et al. Thermal hysteretic behavior and negative magnetoresistance in the charge density wave material EuTe 4. Phys. Rev. B 107, 115141 (2023).

    ADS 

    Google Scholar
     

  • Rathore, R. et al. Evolution of static charge density wave order, amplitude mode dynamics, and suppression of kohn anomalies at the hysteretic transition in EuTe 4. Phys. Rev. B 107, 24101 (2023).

    ADS 

    Google Scholar
     

  • Liu, Q. et al. Room-temperature non-volatile optical manipulation of polar order in a charge density wave. Nat. Commun. 15, 8937 (2024).


    Google Scholar
     

  • Verma, A. et al. Picosecond volume expansion drives a later-time insulator–metal transition in a nano-textured mott insulator. Nat. Phys. 20, 807–814 (2024).


    Google Scholar
     

  • Venturini, R. et al. Electrically driven non-volatile resistance switching between charge density wave states at room temperature. Preprint at https://doi.org/10.48550/arXiv.2412.13094 (2024).

  • Duan, S. et al. Identification of metastable lattice distortion free charge density wave at photoinduced interface via TRARPES. npj Quantum Mater. 10, 16 (2025).


    Google Scholar
     

  • de la Torre, A. et al. Dynamic phase transition into a mixed-CDW state in 1$T$-TaS$_2$ via a thermal quench. Preprint at https://doi.org/10.48550/arXiv.2407.07953 (2025).

  • Boix-Constant, C. et al. Out-of-plane transport of 1T-TaS2 /graphene-based van der waals heterostructures. ACS Nano 15, 11898–11907 (2021).


    Google Scholar
     

  • Taheri, M. et al. Electrical gating of the charge-density-wave phases in two-dimensional h -BN/1T-TaS2 devices. ACS Nano 16, 18968–18977 (2022).


    Google Scholar
     

  • Shi, J. et al. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater. 30, 1804616 (2018).


    Google Scholar
     

  • Yanase, T. et al. Unidirectional growth of epitaxial tantalum disulfide triangle crystals grown on sapphire by chemical vapour deposition with a separate-flow system. CrystEngComm 26, 341–348 (2024).


    Google Scholar
     

  • Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS 

    Google Scholar
     

  • Du, R. et al. Two-dimensional multiferroic material of metallic p-doped SnSe. Nat. Commun. 13, 6130 (2022).

    ADS 

    Google Scholar
     

  • Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der waals substrates. Nat. Nanotech. 13, 289–293 (2018).

    ADS 

    Google Scholar
     

  • Zhang, G. et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 13, 5067 (2022).

    ADS 

    Google Scholar
     

  • Shao, D.-F. & Tsymbal, E. Y. Antiferromagnetic tunnel junctions for spintronics. npj Spintron. 2, 13 (2024).


    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    ADS 

    Google Scholar
     

  • Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    ADS 

    Google Scholar
     

  • Wang, X. et al. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat. Commun. 14, 840 (2023).

    ADS 

    Google Scholar
     

  • Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    ADS 

    Google Scholar
     

  • Sattar, S., Islam, M. F. & Canali, C. M. Monolayer Mn X. and Janus, X Mn Y (X, Y= S, Se, Te): a family of two-dimensional antiferromagnetic semiconductors. Phys. Rev. B 106, 085410 (2022).

  • Moinuddin, M. G., Srinivasan, S. & Sharma, S. K. Probing ferrimagnetic semiconductor with enhanced negative magnetoresistance: 2D chromium sulfide. Adv. Electron. Mater. 7, 2001116 (2021).


    Google Scholar
     

  • Girovsky, J. et al. Long-range ferrimagnetic order in a two-dimensional supramolecular kondo lattice. Nat. Commun. 8, 15388 (2017).

    ADS 

    Google Scholar
     

  • Li, X. & Yang, J. Toward room-temperature magnetic semiconductors in two-dimensional ferrimagnetic organometallic lattices. J. Phys. Chem. Lett. 10, 2439–2444 (2019).


    Google Scholar
     

  • Fender, S. S., Gonzalez, O. & Bediako, D. K. Altermagnetism: a chemical perspective. J. Am. Chem. Soc. 147, 2257–2274 (2025).


    Google Scholar
     

  • Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. https://doi.org/10.1038/s41578-025-00779-1 (2025).


    Google Scholar
     

  • Reichlova, H. et al. Observation of a spontaneous anomalous hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).

    ADS 

    Google Scholar
     

  • Regmi, R.B., Bhandari, H. & Thapa, B. Altermagnetism in the layered intercalated transition metal dichalcogenide CoNb4Se8. Nat Commun 16, 4399 (2025).


    Google Scholar
     

  • Lawrence, E. A. et al. Fe site order and magnetic properties of Fe1/4 NbS2. Inorg. Chem. 62, 18179–18188 (2023).


    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    ADS 

    Google Scholar
     

  • Bera, S. & Mandal, S. S. Theory of the skyrmion, meron, antiskyrmion, and antimeron in chiral magnets. Phys. Rev. Res. 1, 033109 (2019).


    Google Scholar
     

  • Tey, M. S. N., Chen, X., Soumyanarayanan, A. & Ho, P. Chiral spin textures for next-generation memory and unconventional computing. ACS Appl. Electron. Mater. 4, 5088–5097 (2022).


    Google Scholar
     

  • Crépieux, A. & Lacroix, C. Dzyaloshinsky–moriya interactions induced by symmetry breaking at a surface. J. Magn. Magn. Mater. 182, 341–349 (1998).

    ADS 

    Google Scholar
     

  • Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    ADS 

    Google Scholar
     

  • Behera, A. K., Chowdhury, S. & Das, S. R. Magnetic skyrmions in atomic thin CrI3 monolayer. Appl. Phys. Lett. 114, 232402 (2019).

    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Generation of magnetic skyrmions in two-dimensional magnets via interfacial proximity. Phys. Rev. B 107, 24402 (2023).

    ADS 

    Google Scholar
     

  • Hallal, A. et al. Rashba-type dzyaloshinskii–moriya interaction, perpendicular magnetic anisotropy, and skyrmion states at 2D materials/Co interfaces. Nano Lett. 21, 7138–7144 (2021).

    ADS 

    Google Scholar
     

  • Sun, W. et al. Manipulation of magnetic skyrmion in a 2D van der Waals heterostructure via both electric and magnetic fields. Adv. Funct. Mater. 31, 2104452 (2021).


    Google Scholar
     

  • Cui, Q. et al. Anisotropic Dzyaloshinskii–Moriya interaction and topological magnetism in two-dimensional magnets protected by P 4̅ m 2 crystal symmetry. Nano Lett. 22, 2334–2341 (2022).

    ADS 

    Google Scholar
     

  • Bennett, D., Chaudhary, G., Slager, R.-J., Bousquet, E. & Ghosez, P. Polar meron-antimeron networks in strained and twisted bilayers. Nat. Commun. 14, 1629 (2023).

    ADS 

    Google Scholar
     

  • Xia, J., Zhang, X., Liu, X., Zhou, Y. & Ezawa, M. Qubits based on merons in magnetic nanodisks. Commun. Mater. 3, 88 (2022).


    Google Scholar
     

  • Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).


    Google Scholar
     

  • Ahn, E. C. 2D materials for spintronic devices. npj 2D Mater. Appl 4, 17 (2020).


    Google Scholar
     

  • Ikeda, S. et al. Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron Devices 54, 991–1002 (2007).

    ADS 

    Google Scholar
     

  • Kumar, M. et al. Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 31, 19487–19510 (2020).


    Google Scholar
     

  • Tabrizchi, S. et al. Magnetic-based integrated sensing and In/near-sensor processing:a comprehensive survey and future outlook. Preprint at https://doi.org/10.21203/rs.3.rs-4909455/v1 (2024).

  • Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).

    ADS 

    Google Scholar
     

  • Kaverzin, A. A., Ghiasi, T. S., Dismukes, A. H., Roy, X. & van Wees, B. J. Towards fully two-dimensional spintronic devices. 2D Mater. 9, 045003 (2022).


    Google Scholar
     

  • Piquemal-Banci, M. et al. 2D-MTJs: introducing 2D materials in magnetic tunnel junctions. J. Phys. D Appl. Phys. 50, 203002 (2017).

    ADS 

    Google Scholar
     

  • Wang, Z. et al. Tunneling spin valves based on Fe3 GeTe2 /hBN/Fe3 GeTe2 van der waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

    ADS 

    Google Scholar
     

  • Camsari, K. Y., Sutton, B. M. & Datta, S. p-bits for probabilistic spin logic. Appl. Phys. Rev. 6, 11305 (2019).


    Google Scholar
     

  • Daniel, J. et al. Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors. Nat. Commun. 15, 4098 (2024).

    ADS 

    Google Scholar
     

  • Löhndorf, M. et al. Highly sensitive strain sensors based on magnetic tunneling junctions. Appl. Phys. Lett. 81, 313–315 (2002).

    ADS 

    Google Scholar
     

  • Ota, S., Ando, A. & Chiba, D. A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 1, 124–129 (2018).


    Google Scholar
     

  • Liang, S. et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat. Electron. 6, 199–205 (2023).


    Google Scholar
     

  • Behera, B., Sutar, B. C. & Pradhan, N. R. Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity. Emergent Mater. 4, 847–863 (2021).


    Google Scholar
     

  • Guo, Y. et al. 2D multiferroicity with ferroelectric switching induced spin-constrained photoelectricity. ACS Nano 16, 11174–11181 (2022).


    Google Scholar
     

  • Krempaský, J. et al. Efficient magnetic switching in a correlated spin glass. Nat. Commun. 14, 6127 (2023).

    ADS 

    Google Scholar
     

  • Shao, D.-F., Zhang, S.-H., Li, M., Eom, C.-B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

    ADS 

    Google Scholar
     

  • Dong, J. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).

    ADS 

    Google Scholar
     

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    ADS 

    Google Scholar
     

  • Zhang, X. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).


    Google Scholar
     

  • Koraltan, S. et al. Skyrmionic device for three dimensional magnetic field sensing enabled by spin-orbit torques. Preprint at https://doi.org/10.48550/arXiv.2403.16725 (2024).

  • Yokouchi, T. et al. Pattern recognition with neuromorphic computing using magnetic field–induced dynamics of skyrmions. Sci. Adv. 8, eabq5652 (2022).

    ADS 

    Google Scholar
     

  • Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals. Nature 546, 265–269 (2017).

    ADS 

    Google Scholar
     

  • Ansari, M. S., Othman, M. H. D., Ansari, M. O., Ansari, S. & Abdullah, H. Progress in Fe3O4-centered spintronic systems: development, architecture, and features. Appl. Mater. Today 25, 101181 (2021).


    Google Scholar
     

  • Plummer, D. Z. et al. 2D Spintronics for neuromorphic computing with scalability and energy efficiency. J. Low Power Electron. Appl. 15, 16 (2025).


    Google Scholar
     

  • Wang, H. et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der waals Fe3 GeTe2 tailored by a topological insulator. ACS Nano 14, 10045–10053 (2020).


    Google Scholar
     

  • Dankert, A., Venkata Kamalakar, M., Wajid, A., Patel, R. S. & Dash, S. P. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Res 8, 1357–1364 (2015).


    Google Scholar
     

  • Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).


    Google Scholar
     

  • Kumari, S., Pradhan, D. K., Pradhan, N. R. & Rack, P. D. Recent developments on 2D magnetic materials: challenges and opportunities. Emergent Mater. 4, 827–846 (2021).


    Google Scholar
     

  • Hao, Q. et al. 2D magnetic heterostructures and emergent spintronic devices. Adv. Elect. Mater. 8, 2200164 (2022).


    Google Scholar
     

  • Leitao, D. C. et al. Enhanced performance and functionality in spintronic sensors. Npj Spintron. 2, 54 (2024).


    Google Scholar
     

  • Zhao, Z., Lin, Y. & Avsar, A. Novel spintronic effects in two-dimensional van der Waals heterostructures. npj 2D Mater. Appl. 9, 30 (2025).


    Google Scholar
     

  • Cui, Z. et al. Magnetic-ferroelectric synergic control of multilevel conducting states in van der waals multiferroic tunnel junctions towards in-memory computing. Nanoscale 16, 1331–1344 (2024).


    Google Scholar
     

  • Piquemal-Banci, M. et al. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 108, 102404 (2016).

    ADS 

    Google Scholar
     

  • Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).

    ADS 

    Google Scholar
     

  • Schram, T. et al. WS2 transistors on 300 mm wafers with BEOL compatibility. In Proc. 47th European Solid-state Device Research Conference (essderc) 212–215. https://doi.org/10.1109/ESSDERC.2017.8066629 (IEEE, Leuven, Belgium, 2017).

  • Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    ADS 

    Google Scholar
     

  • Zhou, Z. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 621, 499–505 (2023).

    ADS 

    Google Scholar
     

  • Schranghamer, T. F., Sharma, M., Singh, R. & Das, S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 50, 11032–11054 (2021).


    Google Scholar
     

  • Nakatani, M. et al. Ready-to-transfer two-dimensional materials using tunable adhesive force tapes. Nat. Electron. 7, 119–130 (2024).


    Google Scholar
     

  • Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

    ADS 

    Google Scholar
     

  • Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    ADS 

    Google Scholar
     

  • Aubin, C. A. et al. Towards enduring autonomous robots via embodied energy. Nature 602, 393–402 (2022).

    ADS 

    Google Scholar
     

  • Rodgers, M. M., Pai, V. M. & Conroy, R. S. Recent advances in wearable sensors for health monitoring. IEEE Sens. J. 15, 3119–3126 (2015).

    ADS 

    Google Scholar
     

  • Wang, T.-Y. et al. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021).


    Google Scholar
     

  • Feng, G. et al. Flexible vertical photogating transistor network with an ultrashort channel for In-sensor visual nociceptor. Adv. Funct. Mater. 31, 2104327 (2021).


    Google Scholar
     

  • Ji, R. et al. Fully light-modulated organic artificial synapse with the assistance of ferroelectric polarization. Adv. Electron. Mater. 8, 2101402 (2022).


    Google Scholar
     

  • Haldane, F. D. M. Nobel lecture: topological quantum matter. Rev. Mod. Phys. 89, 40502 (2017).

    MathSciNet 

    Google Scholar
     

  • Kou, X., Fan, Y., Lang, M., Upadhyaya, P. & Wang, K. L. Magnetic topological insulators and quantum anomalous hall effect. Solid State Commun. 215–216, 34–53 (2015).

    ADS 

    Google Scholar
     

  • Liu, Y. et al. Cryogenic in-memory computing using magnetic topological insulators. Nat. Mater. https://doi.org/10.1038/s41563-024-02088-4 (2025).

  • Zhu, T., Wang, H., Zhang, H. & Xing, D. Tunable dynamical magnetoelectric effect in antiferromagnetic topological insulator MnBi2Te4 films. npj Comput. Mater. 7, 121 (2021).

    ADS 

    Google Scholar
     

  • Weber, B. et al. 2024 roadmap on 2D topological insulators. J. Phys. Mater. 7, 22501 (2024).


    Google Scholar
     

  • Cucchi, I. et al. Microfocus laser–angle-resolved photoemission on encapsulated mono-, Bi-, and few-layer 1T′-WTe2. Nano Lett. 19, 554–560 (2019).

    ADS 

    Google Scholar
     

  • Xu, N., Xu, Y. & Zhu, J. Topological insulators for thermoelectrics. npj Quantum Mater. 2, 51 (2017).

    ADS 

    Google Scholar
     

  • Wen, W., Dang, C. & Xie, L. Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2 *. Chin. Phys. B 28, 58504 (2019).

    ADS 

    Google Scholar
     

  • Freitas, P. P., Ferreira, R. & Cardoso, S. Spintronic sensors. Proc. IEEE 104, 1894–1918 (2016).


    Google Scholar