• Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    CAS 

    Google Scholar
     

  • IPCC Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).

  • Tracking Clean Energy Progress 2023 (IEA, 2023).

  • Hsu, A. et al. Climactor, harmonized transnational data on climate network participation by city and regional governments. Sci. Data 7, 374 (2020).


    Google Scholar
     

  • Net Zero Tracker. Net Zero Stocktake 2023 http://www.zerotracker.net/analysis/net-zero-stocktake-2023 (NewClimate Institute, Oxford Net Zero, Energy and Climate Intelligence Unit and Data-Driven EnviroLab, 2023).

  • Buildings (IEA, 2023).

  • Riahi, K. et al. Mitigation pathways compatible with long-term goals. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 3 (Cambridge Univ. Press, 2022).

  • Arias, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33–144 (Cambridge Univ. Press, 2021).

  • Seto, K. C. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 923–1000 (Cambridge Univ. Press, 2015).

  • Hsu, A., Wang, X., Tan, J., Toh, W. & Goyal, N. Predicting european cities’ climate mitigation performance using machine learning. Nat. Commun. 13, 7487 (2022).

    CAS 

    Google Scholar
     

  • Ribeiro, H. V., Rybski, D. & Kropp, J. P. Effects of changing population or density on urban carbon dioxide emissions. Nat. Commun. 10, 3204 (2019).


    Google Scholar
     

  • Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).


    Google Scholar
     

  • Barrington-Leigh, C. & Millard-Ball, A. Global trends toward urban street-network sprawl. Proc. Natl Acad. Sci. USA 117, 1941–1950 (2020).

    CAS 

    Google Scholar
     

  • Georgescu, M., Morefield, P. E., Bierwagen, B. G. & Weaver, C. P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl Acad. Sci. USA 111, 2909–2914 (2014).

    CAS 

    Google Scholar
     

  • Berrill, P., Wilson, E. J., Reyna, J. L., Fontanini, A. D. & Hertwich, E. G. Decarbonization pathways for the residential sector in the United States. Nat. Clim. Change 12, 712–718 (2022).


    Google Scholar
     

  • Shao, M., Wang, X., Bu, Z., Chen, X. & Wang, Y. Prediction of energy consumption in hotel buildings via support vector machines. Sustainable Cities Soc. 57, 102128 (2020).


    Google Scholar
     

  • To Create Net-Zero Cities, We Need to Look Hard at Our Older Buildings (World Economic Forum, 2022).

  • Zhao, X., Yin, Y., Zhang, S. & Xu, G. Data-driven prediction of energy consumption of district cooling systems (dcs) based on the weather forecast data. Sustainable Cities Soc. 90, 104382 (2023).


    Google Scholar
     

  • Reinhart, C. F. & Davila, C. C. Urban building energy modeling–a review of a nascent field. Building Environ. 97, 196–202 (2016).


    Google Scholar
     

  • Howard, B. et al. Spatial distribution of urban building energy consumption by end use. Energy Buildings 45, 141–151 (2012).


    Google Scholar
     

  • Mohammadi, N. & Taylor, J. E. Urban energy flux: spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction. Appl. Energy 195, 810–818 (2017).


    Google Scholar
     

  • Yang, Y., Tan, Z. & Schläpfer, M. Assessing the space-use efficiency of french cities by coupling city volumes with mobile data traffic. Sustainable Cities Soc. 124, 106292 (2025).


    Google Scholar
     

  • Hong, T., Chen, Y., Luo, X., Luo, N. & Lee, S. H. Ten questions on urban building energy modeling. Building Environ. 168, 106508 (2020).


    Google Scholar
     

  • Chou, J.-S. & Tran, D.-S. Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy 165, 709–726 (2018).


    Google Scholar
     

  • Streltsov, A., Malof, J. M., Huang, B. & Bradbury, K. Estimating residential building energy consumption using overhead imagery. Appl. Energy 280, 116018 (2020).


    Google Scholar
     

  • Dougherty, T. R., Huang, T., Chen, Y., Jain, R. K. & Rajagopal, R. Schmear: scalable construction of holistic models for energy analysis from rooftops. In Proc. 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation 111–120 (Association for Computing Machinery, 2021).

  • Biljecki, F. & Ito, K. Street view imagery in urban analytics and gis: a review. Landscape Urban Plann. 215, 104217 (2021).


    Google Scholar
     

  • Biljecki, F., Zhao, T., Liang, X. & Hou, Y. Sensitivity of measuring the urban form and greenery using street-level imagery: a comparative study of approaches and visual perspectives. Int. J. Appl. Earth Obs. Geoinf. 122, 103385 (2023).


    Google Scholar
     

  • Zhang, F. et al. Urban visual intelligence: studying cities with artificial intelligence and street-level imagery. Ann. Am. Assoc. Geogr. https://doi.org/10.1080/24694452.2024.2313515 (2024).

  • Sun, M. et al. Understanding building energy efficiency with administrative and emerging urban big data by deep learning in glasgow. Energy Buildings 273, 112331 (2022).


    Google Scholar
     

  • Mayer, K. et al. Estimating building energy efficiency from street view imagery, aerial imagery, and land surface temperature data. Appl. Energy 333, 120542 (2023).


    Google Scholar
     

  • Sun, M. & Bardhan, R. Identifying hard-to-decarbonize houses from multi-source data in Cambridge, UK. Sustainable Cities Soc. 100, 105015 (2024).


    Google Scholar
     

  • Yap, W. & Biljecki, F. A global feature-rich network dataset of cities and dashboard for comprehensive urban analyses. Sci. Data 10, 667 (2023).


    Google Scholar
     

  • Hou, Y. et al. Global streetscapes—a comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics. ISPRS J. Photogramm. Remote Sens. 215, 216–238 (2024).


    Google Scholar
     

  • Goldstein, B., Gounaridis, D. & Newell, J. P. The carbon footprint of household energy use in the United States. Proc. Natl Acad. Sci. USA 117, 19122–19130 (2020).

    CAS 

    Google Scholar
     

  • de Chalendar, J. A., Taggart, J. & Benson, S. M. Tracking emissions in the US electricity system. Proc. Natl Acad. Sci. USA 116, 25497–25502 (2019).


    Google Scholar
     

  • To Meet Our Global Climate Ambitions, We Must Tackle Embodied Carbon (World Economic Forum, 2024).

  • 2021 Global Status Report for Buildings and Construction (Global Alliance for Buildings and Construction, 2021).

  • Buildings. NYC Mayor’s Office of Climate and Environmental Justice https://climate.cityofnewyork.us/subtopics/buildings/ (2024).

  • Timmons, D., Zirogiannis, N. & Lutz, M. Location matters: population density and carbon emissions from residential building energy use in the united states. Energy Res. Social Sci. 22, 137–146 (2016).


    Google Scholar
     

  • Gudipudi, R., Fluschnik, T., Ros, A. G. C., Walther, C. & Kropp, J. P. City density and CO2 efficiency. Energy Policy 91, 352–361 (2016).

    CAS 

    Google Scholar
     

  • Chen, J. et al. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 9, 202 (2022).


    Google Scholar
     

  • Fox, S., Agyemang, F., Hawker, L. & Neal, J. Integrating social vulnerability into high-resolution global flood risk mapping. Nat. Commun. 15, 3155 (2024).

    CAS 

    Google Scholar
     

  • Jaganathan, S. et al. Estimating the effect of annual PM2.5 exposure on mortality in India: a difference-in-differences approach. Lancet Planet. Health 8, e987–e996 (2024).


    Google Scholar
     

  • Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).

    CAS 

    Google Scholar
     

  • Jones, C. & Kammen, D. M. Spatial distribution of US household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environ. Sci. Technol. 48, 895–902 (2014).

    CAS 

    Google Scholar
     

  • The Paris Agreement (UNFCC, 2015).

  • Moore, F. C. et al. Determinants of emissions pathways in the coupled climate–social system. Nature 603, 103–111 (2022).

    CAS 

    Google Scholar
     

  • Yu, Y. et al. Decarbonization efforts hindered by china’s slow progress on electricity market reforms. Nat. Sustainability 6, 1006–1015 (2023).


    Google Scholar
     

  • Dong, L. et al. Defining a city—delineating urban areas using cell-phone data. Nat. Cities 1, 117–125 (2024).


    Google Scholar
     

  • Pisello, A. L., Taylor, J. E., Xu, X. & Cotana, F. Inter-building effect: simulating the impact of a network of buildings on the accuracy of building energy performance predictions. Building Environ. 58, 37–45 (2012).


    Google Scholar
     

  • Li, Y., Schubert, S., Kropp, J. P. & Rybski, D. On the influence of density and morphology on the urban heat island intensity. Nat. Commun. 11, 2647 (2020).

    CAS 

    Google Scholar
     

  • Gao, J. & Bukovsky, M. S. Urban land patterns can moderate population exposures to climate extremes over the 21st century. Nat. Commun. 14, 6536 (2023).

    CAS 

    Google Scholar
     

  • Hou, H., Su, H., Yao, C. & Wang, Z.-H. Spatiotemporal patterns of the impact of surface roughness and morphology on urban heat island. Sustainable Cities Soc. 92, 104513 (2023).


    Google Scholar
     

  • Ritchie, H., Roser, M. & Rosado, P. CO2 and Greenhouse Gas Emissions (Our World in Data, 2020).

  • Hsu, A., Sheriff, G., Chakraborty, T. & Manya, D. Disproportionate exposure to urban heat island intensity across major us cities. Nat. Commun. 12, 2721 (2021).

    CAS 

    Google Scholar
     

  • Batty, M. Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban Morphologies (Springer, 2009).

  • Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).


    Google Scholar
     

  • Yap, W., Stouffs, R. & Biljecki, F. Urbanity: automated modelling and analysis of multidimensional networks in cities. Npj Urban Sustainability 3, 45 (2023).


    Google Scholar
     

  • Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorolog. Soc. 93, 1879–1900 (2012).


    Google Scholar
     

  • Demuzere, M. et al. A global map of local climate zones to support earth system modelling and urban scale environmental science. Earth Syst. Sci. Data Discuss. 2022, 1–57 (2022).


    Google Scholar
     

  • Yang, Q. et al. A global urban heat island intensity dataset: generation, comparison, and analysis. Remote Sens. Environ. 312, 114343 (2024).


    Google Scholar
     

  • Cheng, B., Misra, I., Schwing, A. G., Kirillov, A. & Girdhar, R. Masked-attention mask transformer for universal image segmentation. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 1290–1299 (IEEE, 2022).

  • Facebook Connectivity Lab and Center for International Earth Science Information Network—High Resolution Settlement Layer (HRSL) (CIESIN, 2016).

  • Che, Y. et al. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth Syst. Sci. Data Discuss. 2024, 1–28 (2024).


    Google Scholar
     

  • Hamilton, W., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. In 31st Conference on Neural Information Processing Systems (NIPS 2017) https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf (NIPS, 2017).

  • Yang, S., Chong, A., Liu, P. & Biljecki, F. Thermal comfort in sight: thermal affordance and its visual assessment for sustainable streetscape design. Building Environ. 112569 (2025).

  • Song, C. et al. Developing urban building energy models for shanghai city with multi-source open data. Sustainable Cities Soc. 106, 105425 (2024).


    Google Scholar
     

  • Biljecki, F. & Chow, Y. S. Global building morphology indicators. Comput. Environ. Urban Syst. 95, 101809 (2022).


    Google Scholar
     

  • Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch geometric. In International Conference on Learning Representations https://rlgm.github.io/papers/2.pdf (2019).

  • Statistical Review of World Energy (Energy Institute, 2024); https://www.energyinst.org/statistical-review