Goryachev, M. et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014).
Everts, J. R. et al. Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare-earth ion spins. Phys. Rev. B 101, 214414 (2020).
Lambert, N. J., Haigh, J. A. & Ferguson, A. J. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity. J. Appl. Phys. 117, 053910 (2015).
Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).
Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014).
Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K. & Nakamura, Y. Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019).
Zare Rameshti, B. et al. Cavity magnonics. Phys. Rep. 979, 1–61 (2022).
Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405 (2015).
Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425 (2020).
Lambert, N. J., Haigh, J. A., Langenfeld, S., Doherty, A. C. & Ferguson, A. J. Cavity-mediated coherent coupling of magnetic moments. Phys. Rev. A 93, 021803 (2016).
Wang, Y.-P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019).
Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl. 13, 044039 (2020).
Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017).
Liu, H. et al. Observation of exceptional points in magnonic parity-time symmetry devices. Sci. Adv. 5, eaax9144 (2019).
Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).
Cao, Y. & Yan, P. Exceptional magnetic sensitivity of 𝒫𝒯-symmetric cavity magnon polaritons. Phys. Rev. B 99, 214415 (2019).
Harder, M., Yao, B. M., Gui, Y. S. & Hu, C.-M. Coherent and dissipative cavity magnonics. J. Appl. Phys. 129, 201101 (2021).
Hurst, H. M. & Flebus, B. Non-Hermitian physics in magnetic systems. J. Appl. Phys. 132, 220902 (2022).
Qian, J. et al. Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics. Nat. Commun. 14, 3437 (2023).
Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139 (2024).
Vitanov, N. V., Rangelov, A. A., Shore, B. W. & Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).
Xu, J. et al. Floquet cavity electromagnonics. Phys. Rev. Lett. 125, 237201 (2020).
Qi, S.-F & Jing, J. Floquet generation of a magnonic NOON state. Phys. Rev. A 107, 013702 (2023).
Yang, Y., Xiao, Y. & Hu, C.-M. Theory of Floquet-driven dissipative cavity magnonics. Phys. Rev. B 107, 054413 (2023).
Zhang, F.-Y., Wu, Q.-C. & Yang, C.-P. Non-Hermitian shortcut to adiabaticity in Floquet cavity electromagnonics. Phys. Rev. A 106, 012609 (2022).
Zhu, X., Xia, R. & Xu, L. Floquet-engineering magnonic NOON states with performance improved by soft quantum control. Quantum Inf. Process. 22, 454 (2023).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018).
Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18, 783 (2019).
Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014).
Dietz, B. et al. Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E 75, 027201 (2007).
Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76 (2016).
Partanen, M. et al. Exceptional points in tunable superconducting resonators. Phys. Rev. B 100, 134505 (2019).
Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80 (2016).
Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479 (2018).
Stehmann, T., Heiss, W. D. & Scholtz, F. G. Observation of exceptional points in electronic circuits. J. Phys. A 37, 7813 (2004).
Choi, Y., Hahn, C., Yoon, J. W. & Song, S. H. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nat. Commun. 9, 2182 (2018).
Choi, Y., Yoon, J. W., Hong, J. K., Ryu, Y. & Song, S. H. Direct observation of time-asymmetric breakdown of the standard adiabaticity around an exceptional point. Commun. Phys. 3, 1 (2020).
Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86 (2018).
Feilhauer, J. et al. Encircling exceptional points as a non-Hermitian extension of rapid adiabatic passage. Phys. Rev. A 102, 040201 (2020).
Jiang, X. et al. Coherent control of chaotic optical microcavity with reflectionless scattering modes. Nat. Phys. 20, 109–115 (2024).
Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884 (2022).
Ergoktas, M. S. et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science 376, 184 (2022).
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59 (2021).
Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271 (2022).
Rao, Z. et al. Braiding reflectionless states in non-Hermitian magnonics. Nat. Phys. 20, 1904 (2024).
Morris, R. G. E., van Loo, A. F., Kosen, S. & Karenowska, A. D. Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit. Sci. Rep. 7, 11511 (2017).
Walker, L. R. Magnetostatic modes in ferromagnetic resonance. Phys. Rev. 105, 390 (1957).
Fletcher, P., Solt, I. H. & Bell, R. Identification of the magnetostatic modes of ferrimagnetic resonant spheres. Phys. Rev. 114, 739 (1959).
Harder, M. et al. Level attraction due to dissipative magnon-photon coupling. Phys. Rev. Lett. 121, 137203 (2018).
Gilary, I., Mailybaev, A. A. & Moiseyev, N. Time-asymmetric quantum-state-exchange mechanism. Phys. Rev. A 88, 010102 (2013).
Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A 44, 435302 (2011).
Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256 (2022).
Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017).
Znojil, M. Passage through exceptional point: case study. Proc. Math. Phys. Eng. Sci. 476, 20190831 (2020).
Lambert, N. J., Schumer, A., Longdell, J. J., Rotter, S. & Schwefel, H. G. L. Data for figures in ‘Coherent control of magnon-polaritons using an exceptional point’. Zenodo https://doi.org/10.5281/zenodo.15756785 (2025).