• Goryachev, M. et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014).

    ADS 

    Google Scholar
     

  • Everts, J. R. et al. Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare-earth ion spins. Phys. Rev. B 101, 214414 (2020).

    ADS 

    Google Scholar
     

  • Lambert, N. J., Haigh, J. A. & Ferguson, A. J. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity. J. Appl. Phys. 117, 053910 (2015).

    ADS 

    Google Scholar
     

  • Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).

    ADS 

    Google Scholar
     

  • Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014).

    ADS 

    Google Scholar
     

  • Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K. & Nakamura, Y. Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019).

    ADS 

    Google Scholar
     

  • Zare Rameshti, B. et al. Cavity magnonics. Phys. Rep. 979, 1–61 (2022).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405 (2015).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425 (2020).

    ADS 

    Google Scholar
     

  • Lambert, N. J., Haigh, J. A., Langenfeld, S., Doherty, A. C. & Ferguson, A. J. Cavity-mediated coherent coupling of magnetic moments. Phys. Rev. A 93, 021803 (2016).

    ADS 

    Google Scholar
     

  • Wang, Y.-P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019).

    ADS 

    Google Scholar
     

  • Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl. 13, 044039 (2020).

    ADS 

    Google Scholar
     

  • Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017).

    ADS 

    Google Scholar
     

  • Liu, H. et al. Observation of exceptional points in magnonic parity-time symmetry devices. Sci. Adv. 5, eaax9144 (2019).

    ADS 

    Google Scholar
     

  • Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).

    ADS 

    Google Scholar
     

  • Cao, Y. & Yan, P. Exceptional magnetic sensitivity of 𝒫⁢𝒯-symmetric cavity magnon polaritons. Phys. Rev. B 99, 214415 (2019).

    ADS 

    Google Scholar
     

  • Harder, M., Yao, B. M., Gui, Y. S. & Hu, C.-M. Coherent and dissipative cavity magnonics. J. Appl. Phys. 129, 201101 (2021).

    ADS 

    Google Scholar
     

  • Hurst, H. M. & Flebus, B. Non-Hermitian physics in magnetic systems. J. Appl. Phys. 132, 220902 (2022).

    ADS 

    Google Scholar
     

  • Qian, J. et al. Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics. Nat. Commun. 14, 3437 (2023).

    ADS 

    Google Scholar
     

  • Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139 (2024).


    Google Scholar
     

  • Vitanov, N. V., Rangelov, A. A., Shore, B. W. & Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).

    ADS 

    Google Scholar
     

  • Xu, J. et al. Floquet cavity electromagnonics. Phys. Rev. Lett. 125, 237201 (2020).

    ADS 

    Google Scholar
     

  • Qi, S.-F & Jing, J. Floquet generation of a magnonic NOON state. Phys. Rev. A 107, 013702 (2023).

    ADS 

    Google Scholar
     

  • Yang, Y., Xiao, Y. & Hu, C.-M. Theory of Floquet-driven dissipative cavity magnonics. Phys. Rev. B 107, 054413 (2023).

    ADS 

    Google Scholar
     

  • Zhang, F.-Y., Wu, Q.-C. & Yang, C.-P. Non-Hermitian shortcut to adiabaticity in Floquet cavity electromagnonics. Phys. Rev. A 106, 012609 (2022).

    ADS 

    Google Scholar
     

  • Zhu, X., Xia, R. & Xu, L. Floquet-engineering magnonic NOON states with performance improved by soft quantum control. Quantum Inf. Process. 22, 454 (2023).

    ADS 
    MathSciNet 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018).


    Google Scholar
     

  • Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18, 783 (2019).

    ADS 

    Google Scholar
     

  • Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014).


    Google Scholar
     

  • Dietz, B. et al. Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E 75, 027201 (2007).

    ADS 

    Google Scholar
     

  • Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76 (2016).

    ADS 

    Google Scholar
     

  • Partanen, M. et al. Exceptional points in tunable superconducting resonators. Phys. Rev. B 100, 134505 (2019).

    ADS 

    Google Scholar
     

  • Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80 (2016).

    ADS 

    Google Scholar
     

  • Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479 (2018).

    ADS 

    Google Scholar
     

  • Stehmann, T., Heiss, W. D. & Scholtz, F. G. Observation of exceptional points in electronic circuits. J. Phys. A 37, 7813 (2004).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Choi, Y., Hahn, C., Yoon, J. W. & Song, S. H. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nat. Commun. 9, 2182 (2018).

    ADS 

    Google Scholar
     

  • Choi, Y., Yoon, J. W., Hong, J. K., Ryu, Y. & Song, S. H. Direct observation of time-asymmetric breakdown of the standard adiabaticity around an exceptional point. Commun. Phys. 3, 1 (2020).


    Google Scholar
     

  • Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86 (2018).

    ADS 

    Google Scholar
     

  • Feilhauer, J. et al. Encircling exceptional points as a non-Hermitian extension of rapid adiabatic passage. Phys. Rev. A 102, 040201 (2020).

    ADS 

    Google Scholar
     

  • Jiang, X. et al. Coherent control of chaotic optical microcavity with reflectionless scattering modes. Nat. Phys. 20, 109–115 (2024).


    Google Scholar
     

  • Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884 (2022).

    ADS 

    Google Scholar
     

  • Ergoktas, M. S. et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science 376, 184 (2022).

    ADS 

    Google Scholar
     

  • Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59 (2021).

    ADS 

    Google Scholar
     

  • Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271 (2022).

    ADS 

    Google Scholar
     

  • Rao, Z. et al. Braiding reflectionless states in non-Hermitian magnonics. Nat. Phys. 20, 1904 (2024).


    Google Scholar
     

  • Morris, R. G. E., van Loo, A. F., Kosen, S. & Karenowska, A. D. Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit. Sci. Rep. 7, 11511 (2017).

    ADS 

    Google Scholar
     

  • Walker, L. R. Magnetostatic modes in ferromagnetic resonance. Phys. Rev. 105, 390 (1957).

    ADS 

    Google Scholar
     

  • Fletcher, P., Solt, I. H. & Bell, R. Identification of the magnetostatic modes of ferrimagnetic resonant spheres. Phys. Rev. 114, 739 (1959).

    ADS 

    Google Scholar
     

  • Harder, M. et al. Level attraction due to dissipative magnon-photon coupling. Phys. Rev. Lett. 121, 137203 (2018).

    ADS 

    Google Scholar
     

  • Gilary, I., Mailybaev, A. A. & Moiseyev, N. Time-asymmetric quantum-state-exchange mechanism. Phys. Rev. A 88, 010102 (2013).

    ADS 

    Google Scholar
     

  • Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A 44, 435302 (2011).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256 (2022).

    ADS 

    Google Scholar
     

  • Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017).

    ADS 

    Google Scholar
     

  • Znojil, M. Passage through exceptional point: case study. Proc. Math. Phys. Eng. Sci. 476, 20190831 (2020).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Lambert, N. J., Schumer, A., Longdell, J. J., Rotter, S. & Schwefel, H. G. L. Data for figures in ‘Coherent control of magnon-polaritons using an exceptional point’. Zenodo https://doi.org/10.5281/zenodo.15756785 (2025).