• Lenton, T. M. et al. The Global Tipping Points Report 2023 (Univ. of Exeter, 2023). This report assesses Earth system and social tipping points, aiming to inform decision-makers and the public about the risks and opportunities associated with the urgent global challenges of climate change and biodiversity loss.

  • Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evolut. Systemat. 35, 557–581 (2004).


    Google Scholar
     

  • Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    PubMed 

    Google Scholar
     

  • Kopp, R. E. et al. ‘Tipping points’ confuse and can distract from urgent climate action. Nat. Clim. Change 15, 29–36 (2025). This article critiques the tipping points framework by examining the history and effectiveness of this framework, and provides recommendations for clearer and more specific descriptions of abrupt changes to better inform decision making.


    Google Scholar
     

  • IPCC. Summary for Policymakers, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner H.-O. et al.) (Cambridge Univ. Press, 2019).

  • Meredith, M. et al. Polar Regions, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (Cambridge Univ. Press, 2019).

  • Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change, in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  • Constable, A. J. et al. Cross-Chapter Paper 6: Polar Regions, in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2319–2368 (Cambridge Univ. Press, 2022).

  • Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J. & Phillips, T. Recent changes in Antarctic Sea Ice. Phil. Trans. R. Soc. A 373, 20140163 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

    ADS 

    Google Scholar
     

  • Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D. & Chang, K.-L. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schroeter, S., O’Kane, T. J. & Sandery, P. A. Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode. The Cryosphere 17, 701–717 (2023).

    ADS 

    Google Scholar
     

  • Siegert, M. J. et al. Antarctic extreme events. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2023.1229283 (2023).

  • Gilbert, E. & Holmes, C. 2023’s Antarctic sea ice extent is the lowest on record. Weather 79, 46–51 (2024).

    ADS 

    Google Scholar
     

  • Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023). This influential study demonstrates that Antarctic sea ice has shifted to a new low sea-ice state, and connects this regime shift to the confluence with subsurface warming of the Southern Ocean.

    ADS 

    Google Scholar
     

  • Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea ice. J. Clim. 37, 2263–2275 (2024).

    ADS 

    Google Scholar
     

  • Fogt, R. L., Sleinkofer, A. M., Raphael, M. N. & Handcock, M. S. A regime shift in seasonal total Antarctic sea ice extent in the twentieth century. Nat. Clim. Change 12, 54–62 (2022). This study developed an observation-based reconstruction of Antarctic sea-ice extent that demonstrated the increase in Antarctic sea ice during the satellite era was unusual in a twentieth century context, and also provides a basis for demonstrating the extraordinary nature of abrupt sea-ice loss since 2014.

    ADS 

    Google Scholar
     

  • Dalaiden, Q. et al. An unprecedented sea ice retreat in the Weddell Sea driving an overall decrease of the Antarctic sea-ice extent over the 20th century. Geophys. Res. Lett. 50, e2023GL104666 (2023).

    ADS 

    Google Scholar
     

  • Goosse, H., Dalaiden, Q., Feba, F., Mezzina, B. & Fogt, R. L. A drop in Antarctic sea ice extent at the end of the 1970s. Commun. Earth Environ. 5, 628 (2024).


    Google Scholar
     

  • Raphael, M. N., Maierhofer, T. J., Fogt, R. L., Hobbs, W. R. & Handcock, M. S. A twenty-first century structural change in Antarctica’s sea ice system. Commun. Earth Environ. 6, 131 (2025).


    Google Scholar
     

  • Maierhofer, T. J., Raphael, M. N., Fogt, R. L. & Handcock, M. S. A Bayesian model for 20th century Antarctic sea ice extent reconstruction. Earth Space Sci. 11, e2024EA003577 (2024).


    Google Scholar
     

  • Morioka, Y. et al. Antarctic sea ice multidecadal variability triggered by Southern Annular Mode and deep convection. Commun. Earth Environ. 5, 633 (2024).


    Google Scholar
     

  • Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).

    ADS 

    Google Scholar
     

  • Dakos, V. et al. Tipping point detection and early warnings in climate, ecological, and human systems. Earth Syst. Dynam. 15, 1117–1135 (2024).


    Google Scholar
     

  • Espinosa, Z. I., Blanchard-Wrigglesworth, E. & Bitz, C. M. Understanding the drivers and predictability of record low Antarctic sea ice in austral winter 2023. Commun. Earth Environ. 5, 723 (2024).


    Google Scholar
     

  • Zhang, L. et al. The relative role of the subsurface Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016–2021. Commun. Earth Environ. 3, 302 (2022).

    ADS 

    Google Scholar
     

  • Himmich, K. et al. Thermodynamics drive post-2016 changes in the Antarctic sea ice seasonal cycle. J. Geophys. Res. Oceans 129, e2024JC021112 (2024).


    Google Scholar
     

  • Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamberlain, M. A., Ziehn, T. & Law, R. M. The Southern Ocean as the climate’s freight train—driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5. Biogeosciences 21, 3053–3073 (2024).

    CAS 

    Google Scholar
     

  • King, A. D. et al. Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5. Earth Syst. Dynam. 15, 1353–1383 (2024).


    Google Scholar
     

  • Morioka, Y. et al. Role of anthropogenic forcing in Antarctic sea ice variability simulated in climate models. Nat. Commun. 15, 10511 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, A. D., Abram, N. J., Alastrué de Asenjo, E. & Ziehn, T. ESD Ideas: Extended net zero simulations are critical for informed decision making. EGUsphere https://doi.org/10.5194/egusphere-2025-903 (2025).

  • Holmes, C. R., Bracegirdle, T. J., Holland, P. R., Stroeve, J. & Wilkinson, J. New perspectives on the skill of modelled sea ice trends in light of recent Antarctic sea ice loss. Cryosphere 18, 5641–5652 (2024). This paper demonstrates that recent unprecedented Antarctic sea-ice loss challenges the skill of current climate models in accurately predicting sea-ice trends, emphasizing the urgent need for model refinements to better capture potential abrupt changes.


    Google Scholar
     

  • Duspayev, A., Flanner, M. G. & Riihelä, A. Earth’s sea ice radiative effect from 1980 to 2023. Geophys. Res. Lett. 51, e2024GL109608 (2024).


    Google Scholar
     

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    ADS 

    Google Scholar
     

  • Vogt, L. et al. Increased future ocean heat uptake constrained by Antarctic sea ice extent. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3982037/v2 (2025).

  • England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–281 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Ayres, H. C., Screen, J. A., Blockley, E. W. & Bracegirdle, T. J. The coupled atmosphere–ocean response to Antarctic sea ice loss. J. Clim. 35, 4665–4685 (2022).

    ADS 

    Google Scholar
     

  • Zhou, S. et al. Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes. Nat. Clim. Change 13, 701–709 (2023).

    ADS 

    Google Scholar
     

  • Silvano, A. et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci. 13, 780–786 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Josey, S. A. et al. Record-low Antarctic sea ice in 2023 increased ocean heat loss and storms. Nature 636, 635–639 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reid, P. A. & Massom, R. A. Change and variability in Antarctic coastal exposure, 1979–2020. Nat. Commun. 13, 1164 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fretwell, P. T., Boutet, A. & Ratcliffe, N. Record low 2022 Antarctic sea ice led to catastrophic breeding failure of emperor penguins. Commun. Earth Environ. 4, 273 (2023). The catastrophic regional-scale breeding failure of emperor penguins in 2022 due to record low Antarctic sea ice underscores the vulnerability of polar ecosystems to climate-driven abrupt change, highlighting the potential for irreversible ecological shifts.

    ADS 

    Google Scholar
     

  • Kawaguchi, S. et al. Climate change impacts on Antarctic krill behaviour and population dynamics. Nat. Rev. Earth Environ. 5, 43–58 (2024).

    ADS 

    Google Scholar
     

  • McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abernathey, R. P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Heuzé, C. Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models. Ocean Sci. 17, 59–90 (2021).

    ADS 

    Google Scholar
     

  • Purich, A. & England, M. H. Historical and future projected warming of Antarctic Shelf Bottom Water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

    ADS 

    Google Scholar
     

  • de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282 (2014).


    Google Scholar
     

  • Lago, V. & England, M. H. Projected slowdown of Antarctic Bottom Water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).

    ADS 

    Google Scholar
     

  • Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023). Using a high-resolution ocean model that captures the four known regions of Antarctic Bottom Water formation, this study projects a 40% slowdown of the Antarctic Overturning Circulation by 2050 in response to expected increases in Antarctic meltwater.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huneke, W. G. C., Hobbs, W. R., Klocker, A. & Naughten, K. A. Dynamic response to ice shelf basal meltwater relevant to explain observed sea ice trends near the Antarctic Continental Shelf. Geophys. Res. Lett. 50, e2023GL105435 (2023).

    ADS 

    Google Scholar
     

  • Jacobs, S. S., Giulivi, C. F. & Dutrieux, P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting. J. Geophys. Res. Oceans 127, e2021JC017808 (2022).

    ADS 

    Google Scholar
     

  • Gunn, K. L., Rintoul, S. R., England, M. H. & Bowen, M. M. Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023). Observations from the Australian Antarctic Basin show that over recent decades there has been a reduction in Antarctic Bottom Water transport, coincident with a strong freshening on the continental shelf; this finding is reinforced by equivalent observations from the Weddell sector (ref. 43).

    ADS 

    Google Scholar
     

  • Schmidt, C., Morrison, A. K. & England, M. H. Wind- and sea-ice-driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Oceans 128, e2023JC019774 (2023).

    ADS 

    Google Scholar
     

  • Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).

    ADS 

    Google Scholar
     

  • Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the Last Deglaciation. Science 335, 557–561 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rae, J. W. B. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum. Nat. Commun. 11, 424 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, M. E. et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510, 134–138 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeung, N. K. H., Menviel, L., Meissner, K. J. & Sikes, E. Assessing the spatial origin of meltwater pulse 1A using oxygen-isotope fingerprinting. Paleoceanogr. Paleoclimatol. 34, 2031–2046 (2019).

    ADS 

    Google Scholar
     

  • Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Turney, C. S. M. et al. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proc. Natl Acad. Sci. USA 117, 3996–4006 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayes, C. T. et al. A stagnation event in the deep South Atlantic during the last interglacial period. Science 346, 1514–1517 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Glasscock, S. K., Hayes, C. T., Redmond, N. & Rohde, E. Changes in Antarctic Bottom Water formation during interglacial periods. Paleoceanogr. Paleoclimatol. 35, e2020PA003867 (2020).

    ADS 

    Google Scholar
     

  • Rohling, E. J. et al. Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand. Nat. Commun. 10, 5040 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeung, N. K.-H. et al. Last Interglacial subsurface warming on the Antarctic shelf triggered by reduced deep-ocean convection. Commun. Earth Environ. 5, 212 (2024).

    ADS 

    Google Scholar
     

  • Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018). Global climate impacts of Antarctic meltwater are shown to be far-reaching using a coupled climate model, identifying global surface temperature changes, shifting tropical precipitation and subsurface warming around the Antarctic margins that may accelerate ice shelf basal melting.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro, N. et al. Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit dense shelf water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e2020JC016998 (2021).

    ADS 

    Google Scholar
     

  • Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naughten, K. A., Holland, P. R. & De Rydt, J. Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century. Nat. Clim. Change 13, 1222–1228 (2023). Regional ocean modelling finds rapid ocean warming in the Amundsen Sea for a range of different emission scenarios, suggesting that future mitigation efforts cannot prevent ocean-driven melting of ice shelves in this region.

    ADS 

    Google Scholar
     

  • Ribeiro, N. et al. Oceanic regime shift to a warmer continental shelf adjacent to the Shackleton Ice Shelf, East Antarctica. J. Geophys. Res. Oceans 128, e2023JC019882 (2023).

    ADS 

    Google Scholar
     

  • Mathiot, P. & Jourdain, N. C. Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario. Ocean Sci. 19, 1595–1615 (2023).

    ADS 

    Google Scholar
     

  • Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, M. C. et al. Strong Southern Ocean carbon uptake evident in airborne observations. Science 374, 1275–1280 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Moore, J. K., Primeau, F. & Wang, W. L. Reduced CO2 uptake and growing nutrient sequestration from slowing overturning circulation. Nat. Clim. Change 13, 83–90 (2023).

    ADS 

    Google Scholar
     

  • Dong, Y., Pauling, A. G., Sadai, S. & Armour, K. C. Antarctic ice-sheet meltwater reduces transient warming and climate sensitivity through the sea-surface temperature pattern effect. Geophys. Res. Lett. 49, e2022GL101249 (2022).

    ADS 

    Google Scholar
     

  • Shin, S.-J. et al. Southern Ocean control of 2 °C global warming in climate models. Earth Future 11, e2022EF003212 (2023).

    ADS 

    Google Scholar
     

  • Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosier, S. H. R. et al. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).

    ADS 

    Google Scholar
     

  • Pattyn, F. & Morlighem, M. The uncertain future of the Antarctic Ice Sheet. Science 367, 1331–1335 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2006JF000664 (2007).

  • Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    ADS 

    Google Scholar
     

  • Stokes, C. R. et al. Response of the East Antarctic Ice Sheet to past and future climate change. Nature 608, 275–286 (2022). This paper reveals the potential vulnerability of the East Antarctic Ice Sheet to past and future climate change, highlighting its contribution to sea-level rise and underscoring the importance of understanding ice sheet dynamics in the context of climate tipping points.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutton, A. & Lambeck, K. Ice volume and sea level during the Last Interglacial. Science 337, 216–219 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dumitru, O. A. et al. Last interglacial global mean sea level from high-precision U-series ages of Bahamian fossil coral reefs. Quat. Sci. Rev. 318, 108287 (2023).


    Google Scholar
     

  • Lau, S. C. Y. et al. Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial. Science 382, 1384–1389 (2023). This study uses novel genetic indicators to infer that the West Antarctic Ice Sheet underwent major collapse during the last warm period in Earth’s past when global temperatures were similar to present day.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolff, E. W. et al. The Ronne Ice Shelf survived the last interglacial. Nature 638, 133–137 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iizuka, M. et al. Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial. Nat. Commun. 14, 2129 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutchinson, D. K., Menviel, L., Meissner, K. J. & Hogg, A. M. East Antarctic warming forced by ice loss during the Last Interglacial. Nat. Commun. 15, 1026 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

    ADS 

    Google Scholar
     

  • Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    ADS 

    Google Scholar
     

  • Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

    ADS 

    Google Scholar
     

  • Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).

    ADS 

    Google Scholar
     

  • Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Milillo, P. et al. Rapid glacier retreat rates observed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    ADS 

    Google Scholar
     

  • Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    ADS 

    Google Scholar
     

  • Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    ADS 

    Google Scholar
     

  • Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Christie, F. D. W., Steig, E. J., Gourmelen, N., Tett, S. F. B. & Bingham, R. G. Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica. Nat. Commun. 14, 93 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, E. A. et al. The stability of present-day Antarctic grounding lines, part 1: No indication of marine ice sheet instability in the current geometry. Cryosphere 17, 3739–3759 (2023).

    ADS 

    Google Scholar
     

  • Reese, R. et al. The stability of present-day Antarctic grounding lines, part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded. Cryosphere 17, 3761–3783 (2023). This paper investigates the committed evolution of Antarctic grounding lines under the present-day climate, finding irreversible retreat in the Amundsen Sea Embayment is initiated within centuries but is not yet inevitable.

    ADS 

    Google Scholar
     

  • Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).

    ADS 

    Google Scholar
     

  • Möller, T. et al. Achieving net zero greenhouse gas emissions critical to limit climate tipping risks. Nat. Commun. 15, 6192 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seroussi, H. et al. Evolution of the Antarctic Ice Sheet over the next three centuries from an ISMIP6 model ensemble. Earth Future 12, e2024EF004561 (2024). This contribution provides multi-century projections of the Antarctic Ice Sheet evolution using an ensemble of ice sheet models, revealing a sharp increase in mass loss and uncertainty from 2100 associated with anthropogenic climate change.


    Google Scholar
     

  • Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).

    ADS 

    Google Scholar
     

  • Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

    ADS 

    Google Scholar
     

  • De Angelis, H. & Skvarca, P. Glacier surge after ice shelf collapse. Science 299, 1560–1562 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • Wuite, J. et al. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. Cryosphere 9, 957–969 (2015).

    ADS 

    Google Scholar
     

  • Rott, H. et al. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. Cryosphere 12, 1273–1291 (2018).

    ADS 

    Google Scholar
     

  • Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).

    ADS 

    Google Scholar
     

  • Dell, R. L., Willis, I. C., Arnold, N. S., Banwell, A. F. & de Roda Husman, S. Substantial contribution of slush to meltwater area across Antarctic ice shelves. Nat. Geosci. 17, 624–630 (2024).

    CAS 

    Google Scholar
     

  • Walker, C. C. et al. Multi-decadal collapse of East Antarctica’s Conger–Glenzer Ice Shelf. Nat. Geosci. 17, 1240–1248 (2024).

    CAS 

    Google Scholar
     

  • Wille, J. D. et al. The extraordinary March 2022 East Antarctica “heat” wave. Part II: Impacts on the Antarctic Ice Sheet. J. Clim. 37, 779–799 (2024).

    ADS 

    Google Scholar
     

  • Hill, E. A., Gudmundsson, G. H. & Chandler, D. M. Ocean warming as a trigger for irreversible retreat of the Antarctic ice sheet. Nat. Clim. Change 14, 1165–1171 (2024).


    Google Scholar
     

  • Ben-Yami, M., Skiba, V., Bathiany, S. & Boers, N. Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation. Nat. Commun. 14, 8344 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, R. S. et al. Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic Ice Sheets. J. Adv. Model. Earth Syst. 13, e2021MS002520 (2021).

    ADS 

    Google Scholar
     

  • Zhou, Q. et al. Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet-ocean modelling. Geosci. Model Dev. Discuss. 17, 8243–8265 (2024).


    Google Scholar
     

  • Miles, B. W. J. & Bingham, R. G. Progressive unanchoring of Antarctic ice shelves since 1973. Nature 626, 785–791 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradley, A. T. & Hewitt, I. J. Tipping point in ice-sheet grounding-zone melting due to ocean water intrusion. Nat. Geosci. 17, 631–637 (2024).

    CAS 

    Google Scholar
     

  • Larour, E. et al. Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science 364, eaav7908 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kachuck, S. B., Martin, D. F., Bassis, J. N. & Price, S. F. Rapid viscoelastic deformation slows marine ice sheet instability at Pine Island Glacier. Geophys. Res. Lett. 47, e2019GL086446 (2020).

    ADS 

    Google Scholar
     

  • Houriez, L. et al. Capturing solid earth and ice sheet interactions: insights from reinforced ridges in Thwaites Glacier. EGUsphere https://doi.org/10.5194/egusphere-2024-4136 (2025).

  • Wunderling, N., Donges, J. F., Kurths, J. & Winkelmann, R. Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dynam. 12, 601–619 (2021).

    ADS 

    Google Scholar
     

  • Rosser, J. P., Winkelmann, R. & Wunderling, N. Polar ice sheets are decisive contributors to uncertainty in climate tipping projections. Commun. Earth Environ. 5, 702 (2024).


    Google Scholar
     

  • Seroussi, H. et al. Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty. Cryosphere 17, 5197–5217 (2023).

    ADS 

    Google Scholar
     

  • Ehrenfeucht, S., Dow, C., McArthur, K., Morlighem, M. & McCormack, F. S. Antarctic wide subglacial hydrology modeling. Geophys. Res. Lett. 52, e2024GL111386 (2025).


    Google Scholar
     

  • Graham, F. S. et al. A high-resolution synthetic bed elevation grid of the Antarctic continent. Earth Syst. Sci. Data 9, 267–279 (2017).

    ADS 

    Google Scholar
     

  • Paxman, G. J. G., Gasson, E. G. W., Jamieson, S. S. R., Bentley, M. J. & Ferraccioli, F. Long-term increase in Antarctic Ice Sheet vulnerability driven by bed topography evolution. Geophys. Res. Lett. 47, e2020GL090003 (2020).

    ADS 

    Google Scholar
     

  • Castleman, B. A., Schlegel, N.-J., Caron, L., Larour, E. & Khazendar, A. Derivation of bedrock topography measurement requirements for the reduction of uncertainty in ice-sheet model projections of Thwaites Glacier. Cryosphere 16, 761–778 (2022).

    ADS 

    Google Scholar
     

  • Reading, A. M. et al. Antarctic geothermal heat flow and its implications for tectonics and ice sheets. Nat. Rev. Earth. Environ. 3, 814–831 (2022).

    ADS 

    Google Scholar
     

  • Stål, T., Reading, A. M., Halpin, J. A. & Whittaker, J. M. Antarctic geothermal heat flow model: Aq1. Geochem. Geophys. Geosyst. 22, e2020GC009428 (2021).

    ADS 

    Google Scholar
     

  • Ivins, E. R., van der Wal, W., Wiens, D. A., Lloyd, A. J. & Caron, L. in The Geochemistry and Geophysics of the Antarctic Mantle (eds A. P. Martin & W. van der Wal) (Geological Society of London, 2023).

  • Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths, H. J., Cummings, V. J., Van de Putte, A., Whittle, R. J. & Waller, C. L. Antarctic benthic ecological change. Nat. Rev. Earth Environ. 5, 645–664 (2024). A comprehensive summary of abrupt changes that are threatening cold-adapted species in the benthic communities around Antarctica due to warming, ocean acidification and cryospheric changes.


    Google Scholar
     

  • Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wienecke, B., Lieser, J. L., McInnes, J. C. & Barrington, J. H. S. Fast ice variability in East Antarctica: observed repercussions for emperor penguins. Endang. Species Res. 55, 1–19 (2024).


    Google Scholar
     

  • Ingels, J. et al. Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: science review and future research. WIREs Clim. Change 12, e682 (2021).


    Google Scholar
     

  • Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Global Change Biol. 19, 3749–3761 (2013).

    ADS 

    Google Scholar
     

  • Sahade, R. et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 1, e1500050 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, G. F., Stark, J. S., Palmer, A. S., Riddle, M. J. & Johnston, E. L. The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS ONE 12, e0168391 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecol. Appl. 29, e01823 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prather, H. M. et al. Species-specific effects of passive warming in an Antarctic moss system. R. Soc. Open Sci. 6, 190744 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roland, T. P. et al. Sustained greening of the Antarctic Peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).

    CAS 

    Google Scholar
     

  • Bokhorst, S. et al. Greening rates are sensitive to methodology and biology; comment to sustained greening of the Antarctic Peninsula observed from satellites. Preprint at bioRxiv https://doi.org/10.1101/2024.11.07.622227 (2024).

  • Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e1592 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Global Change Biol. 28, 5865–5880 (2022).

    CAS 

    Google Scholar
     

  • Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biol. 27, 1692–1703 (2021). This perspective underscores the interconnectedness of global ecosystems by demonstrating that ecosystem collapse, from the tropics to the Antarctic, necessitates urgent and comprehensive strategies to mitigate cascading abrupt changes.

    ADS 
    CAS 

    Google Scholar
     

  • Fraser, A. D. et al. Antarctic Landfast Sea Ice: a review of its physics, biogeochemistry and ecology. Rev. Geophys. 61, e2022RG000770 (2023). This review addresses Antarctic land-fast sea ice, highlighting its critical role in regional physics, biogeochemistry and ecology, and emphasizing the potential consequences of its rapid decline.

    ADS 

    Google Scholar
     

  • Jenouvrier, S. et al. The call of the emperor penguin: legal responses to species threatened by climate change. Global Change Biol. 27, 5008–5029 (2021).

    CAS 

    Google Scholar
     

  • Fretwell, P. T. A 6 year assessment of low sea-ice impacts on emperor penguins. Antarct. Sci. 36, 3–5 (2024).

    ADS 

    Google Scholar
     

  • Fretwell, P. T. & Trathan, P. N. Emperors on thin ice: three years of breeding failure at Halley Bay. Antarct. Sci. 31, 133–138 (2019).

    ADS 

    Google Scholar
     

  • Corso, A. D., Steinberg, D. K., Stammerjohn, S. E. & Hilton, E. J. Climate drives long-term change in Antarctic silverfish along the western Antarctic Peninsula. Commun. Biol. 5, 104 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, A. E. et al. Sea ice concentration decline in an important Adélie penguin molt area. Proc. Natl Acad. Sci. USA 120, e2306840120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Barba, M., Belyaev, O., Huertas, I. E. & Navarro, G. Marine heatwaves in a shifting Southern Ocean induce dynamical changes in primary production. Commun. Earth Environ. 5, 404 (2024).


    Google Scholar
     

  • Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Change 9, 148–152 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W. et al. The role of biota in the Southern Ocean carbon cycle. Nat. Rev. Earth Environ. 5, 390–408 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Hancock, A. M., King, C. K., Stark, J. S., McMinn, A. & Davidson, A. T. Effects of ocean acidification on Antarctic marine organisms: a meta-analysis. Ecol. Evol. 10, 4495–4514 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nissen, C. et al. Severe 21st-century ocean acidification in Antarctic Marine Protected Areas. Nat. Commun. 15, 259 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayward, A. et al. Antarctic phytoplankton communities restructure under shifting sea-ice regimes. Nat. Clim. Change, https://doi.org/10.1038/s41558-025-02379-x (2025).

  • Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).

    ADS 

    Google Scholar
     

  • Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411–418 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Naughten, K. A. et al. Two-timescale response of a large Antarctic ice shelf to climate change. Nat. Commun. 12, 1991 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rackow, T. et al. Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nat. Commun. 13, 637 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckmann, J. & Winkelmann, R. Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet. Cryosphere 17, 3083–3099 (2023).

    ADS 

    Google Scholar
     

  • Kubiszewski, I. et al. Cascading tipping points of Antarctica and the Southern Ocean. Ambio 54, 642–659 (2025).

    PubMed 

    Google Scholar
     

  • Hughes, K. A., Convey, P. & Turner, J. Developing resilience to climate change impacts in Antarctica: an evaluation of Antarctic Treaty System protected area policy. Environ. Sci. Policy 124, 12–22 (2021).


    Google Scholar
     

  • Brooks, C. M. et al. Protect global values of the Southern Ocean ecosystem. Science 378, 477–479 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegert, M. et al. Safeguarding the polar regions from dangerous geoengineering: a crticial assessment of current projects and future prospects. Front. Sci. Preprint at https://doi.org/10.13140/RG.2.2.13179.94246 (in the press). The urgency of human-caused climate change and the potential abrupt and irreversibile global impacts of polar changes is sparking pressures for polar geoengineering solutions, but this paper assesses that these are not feasible and may instead be environmentally dangerous.

  • Fankhauser, S. et al. The meaning of net zero and how to get it right. Nat. Clim. Change 12, 15–21 (2022).

    ADS 

    Google Scholar
     

  • Forster, P. M. et al. Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).

    ADS 

    Google Scholar
     

  • Matthews, H. D. et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 13, 769–779 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Moorman, R., Morrison, A. K. & McC. Hogg, A. Thermal responses to Antarctic Ice Shelf melt in an eddy-rich global ocean–sea ice model. J. Clim. 33, 6599–6620 (2020).

    ADS 

    Google Scholar
     

  • Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea ice index, version 3 [Data Set]. National Snow and Ice Data Center https://doi.org/10.7265/N5K072F8 (2017).

  • Meier, W. N., Fetterer, F., Windnagel, A. K. & Stewart, J. S. NOAA/NSIDC climate data record of passive microwave sea ice concentration. (G02202, version 4). [Data Set]. National Snow and Ice Data Center https://doi.org/10.7265/efmz-2t65 (2021).

  • Fogt, R. Antarctic sea ice reconstructions, version 2. Figshare https://doi.org/10.6084/m9.figshare.c.5709767 (2021).

  • Dalaiden, Q. An unprecedented sea ice retreat in the Weddell Sea driving an overall decrease of the Antarctic sea-ice extent over the 20th century [Data set]. Zenodo https://doi.org/10.5281/zenodo.7966209 (2023).

  • Maierhofer, T. J., Raphael, M. N. & Handcock, M. 20th Century Antarctic sea ice extent anomaly reconstruction by sector. Zenodo https://doi.org/10.5281/zenodo.7971734 (2023).

  • Murphy, E. J., Clarke, A., Abram, N. J. & Turner, J. Variability of sea-ice in the northern Weddell Sea during the 20th century. J. Geophys. Res. Oceans 119, 4549–4572 (2014).

    ADS 

    Google Scholar
     

  • Murphy, E., Dunn, M., Turner, J., Clarke, A. & Abram, N. South Orkney Fast-Ice Series (SOFI) (version 2.0) [Data set]. NERC EDS UK Polar Data Centre https://doi.org/10.5285/0313090c-373e-4e2e-97f2-6cd0d4138e75 (2022).

  • Thomas, E. R. & Abram, N. J. Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 A.D. Geophys. Res. Lett. 43, 5309–5317 (2016).

    ADS 

    Google Scholar
     

  • Thomas, E. R. Amundsen-Ross sea ice reconstruction based on data from the Ferrigno ice core (F10), Bryan Coast, West Antarctica (version none) [Data set]. Natural Environment Research Council https://doi.org/10.5285/1f44795b-e596-433c-b69f-caf674880daa (2017).

  • Abram, N. J. et al. Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010JD014644 (2010).

  • Curran, M. A. J., van Ommen, T. D., Morgan, V. I., Phillips, K. L. & Palmer, A. S. Ice core evidence for Antarctic Sea Ice decline since the 1950s. Science 302, 1203–1206 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Curran, M. & van Ommen, T. 150 year MSA sea ice proxy record from Law Dome, Antarctica, (version 1) [Data Set]. Australian Antarctic Data Centre https://doi.org/10.26179/5bf4b43fd4f45 (2011).

  • Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Aitken, A. R. A., Lindsay, M. D. & Kulessa, B. Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks. Nat. Geosci. 15, 645–650 (2022).

    ADS 

    Google Scholar
     

  • Sun, Y., Wang, Y., Zhai, Z. & Zhou, M. Changes in the Antarctic’s summer surface albedo, observed by satellite since 1982 and associated with sea ice anomalies. Remote Sens. 15, 4940 (2023).

    ADS 

    Google Scholar
     

  • van Wessem, J. M., van den Broeke, M. R., Wouters, B. & Lhermitte, S. Variable temperature thresholds of melt pond formation on Antarctic ice shelves. Nat. Clim. Change 13, 161–166 (2023).

    ADS 

    Google Scholar
     

  • Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–1430 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).

    ADS 

    Google Scholar
     

  • Schmidt, A. E. & Ballard, G. Significant chick loss after early fast ice breakup at a high-latitude emperor penguin colony. Antarct. Sci. 32, 180–185 (2020).

    ADS 

    Google Scholar
     

  • Fretwell, P. Four unreported emperor penguin colonies discovered by satellite. Antarct. Sci. 36, 277–279 (2024).


    Google Scholar
     

  • Pawlowicz, R. M_Map: a mapping package for MATLAB version 1.4 m (Computer Software), https://github.com/g2e/m_map (2020).

  • Greene, C. A. et al. The climate data toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

    ADS 

    Google Scholar
     

  • Stål, T. & Reading, A. M. A grid for multidimensional and multivariate spatial representation and data processing. J. Open Res. Softw. 8, 2 (2020).


    Google Scholar
     

  • Abram, N. J., Wolff, E. W. & Curran, M. A. J. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 79, 168–183 (2013).

    ADS 

    Google Scholar
     

  • Cotté, C. & Guinet, C. Historical whaling records reveal major regional retreat of Antarctic sea ice. Deep Sea Res. 54, 243–252 (2007).


    Google Scholar
     

  • de la Mare, W. K. Changes in Antarctic sea-ice extent from direct historical observations and whaling records. Clim. Change 92, 461–493 (2009).

    ADS 

    Google Scholar