• Small, J. S. General-purpose electronic analog computing: 1945-1965. IEEE Ann. Hist. Comput. 15, 8–18 (1993).


    Google Scholar
     

  • Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).


    Google Scholar
     

  • Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).


    Google Scholar
     

  • Huang, Y. et al. Memristor-based hardware accelerators for artificial intelligence. Nat. Rev. Electr. Eng 1, 286–299 (2024).


    Google Scholar
     

  • Liu, H. et al. Artificial neuronal devices based on emerging materials: neuronal dynamics and applications. Adv. Mater. 35, 2205047 (2023).


    Google Scholar
     

  • Gokmen, T. & Haensch, W. Algorithm for training neural networks on resistive device arrays. Front. Neurosci. 14, 103 (2020).


    Google Scholar
     

  • Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S. & Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7, 011309 (2020).

  • Rasch, M. J., Carta, F., Fagbohungbe, O. & Gokmen, T. Fast and robust analog in-memory deep neural network training. Nat. Commun. 15, 7133 (2024).


    Google Scholar
     

  • Noh, K. et al. Retention-aware zero-shifting technique for Tiki-Taka algorithm-based analog deep learning accelerator. Sci. Adv. 10, eadl3350 (2024).


    Google Scholar
     

  • Byun, K. et al. Recent advances in synaptic nonvolatile memory devices and compensating architectural and algorithmic methods toward fully integrated neuromorphic chips. Adv. Mater. Technol. 8, 2200884 (2023).


    Google Scholar
     

  • Gong, N. et al. Deep learning acceleration in 14nm CMOS compatible ReRAM array: device, material and algorithm co-optimization. In IEEE International Electron Devices Meeting (IEDM) 33.37.31–33.37.34 (IEEE, 2022).

  • Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).


    Google Scholar
     

  • Mei, T. & Chen, C. Q. In-memory mechanical computing. Nat. Commun. 14, 5204 (2023).


    Google Scholar
     

  • Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).


    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).


    Google Scholar
     

  • Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019).


    Google Scholar
     

  • Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).


    Google Scholar
     

  • Filipovich, M. J. et al. Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica 9, 1323–1332 (2022).


    Google Scholar
     

  • Lin, Z. et al. 120 GOPS photonic tensor core in thin-film lithium niobate for inference and in situ training. Nat. Commun. 15, 9081 (2024).


    Google Scholar
     

  • Buckley, S. M., Tait, A. N., McCaughan, A. N. & Shastri, B. J. Photonic online learning: a perspective. Nanophotonics 12, 833–845 (2023).


    Google Scholar
     

  • Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).


    Google Scholar
     

  • Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).


    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).


    Google Scholar
     

  • Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).


    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    MathSciNet 

    Google Scholar
     

  • Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023).


    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).


    Google Scholar
     

  • Wang, Z., Chang, L., Wang, F., Li, T. & Gu, T. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat. Commun. 13, 2131 (2022).


    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).


    Google Scholar
     

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).


    Google Scholar
     

  • Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).


    Google Scholar
     

  • Dong, B. et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photon. 17, 1080–1088 (2023).


    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).


    Google Scholar
     

  • Nahmias, M. A. et al. An integrated analog O/E/O link for multi-channel laser neurons. Appl. Phys. Lett. 108, 151109 (2016).

  • Bandyopadhyay, S. et al. Single-chip photonic deep neural network with forward-only training. Nat. Photon. 18, 1335–1343 (2024).


    Google Scholar
     

  • Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).


    Google Scholar
     

  • Pintus, P. et al. Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. Nat. Photon. 19, 54–62 (2025).


    Google Scholar
     

  • Fan, L., Wang, K., Wang, H., Dutt, A. & Fan, S. Experimental realization of convolution processing in photonic synthetic frequency dimensions. Sci. Adv. 9, eadi4956 (2023).


    Google Scholar
     

  • Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).


    Google Scholar
     

  • Buddhiraju, S., Dutt, A., Minkov, M., Williamson, I. A. D. & Fan, S. Arbitrary linear transformations for photons in the frequency synthetic dimension. Nat. Commun. 12, 2401 (2021).


    Google Scholar
     

  • Fan, L. et al. Multidimensional convolution operation with synthetic frequency dimensions in photonics. Phys. Rev. Appl. 18, 034088 (2022).


    Google Scholar
     

  • Basani, J. R., Heuck, M., Englund, D. R. & Krastanov, S. All-photonic artificial-neural-network processor via nonlinear optics. Phys. Rev. Appl. 22, 014009 (2024).


    Google Scholar
     

  • Davis III, R., Chen, Z., Hamerly, R. & Englund, D. RF-photonic deep learning processor with Shannon-limited data movement. Sci. Adv. 11, eadt3558 (2025).


    Google Scholar
     

  • Gong, S., Lu, R., Yang, Y., Gao, L. & Hassanien, A. E. Microwave acoustic devices: recent advances and outlook. IEEE J. Microw. 1, 601–609 (2021).


    Google Scholar
     

  • Lu, R. & Gong, S. RF acoustic microsystems based on suspended lithium niobate thin films: advances and outlook. J. Micromech. Microeng 31, 114001 (2021).


    Google Scholar
     

  • Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).


    Google Scholar
     

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).


    Google Scholar
     

  • Shao, L. et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl. 12, 014022 (2019).


    Google Scholar
     

  • Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).


    Google Scholar
     

  • Cho, Y. & Yamanouchi, K. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. J. Appl. Phys. 61, 875–887 (1987).


    Google Scholar
     

  • Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).

  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).


    Google Scholar
     

  • Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).


    Google Scholar
     

  • de Castilla, H., Bélanger, P. & Zednik, R. J. High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method. J. Appl. Phys. 122, 244103 (2017).


    Google Scholar
     

  • Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).


    Google Scholar
     

  • Xie, J. et al. Sub-terahertz electromechanics. Nat. Electron. 6, 301–306 (2023).


    Google Scholar
     

  • Liu, B. et al. Surface acoustic wave devices for sensor applications. J. Semicond. 37, 021001 (2016).


    Google Scholar
     

  • Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).


    Google Scholar
     

  • Thomas, J. G. et al. Spectral interferometry-based microwave-frequency vibrometry for integrated acoustic wave devices. Optica 12, 935–944 (2025).


    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).


    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).


    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).


    Google Scholar
     

  • Shao, L. Code and plot data for “Synthetic-domain computing and neural networks using lithium niobate integrated nonlinear phononics”. figshare https://doi.org/10.6084/m9.figshare.29376791.v1 (2025).