• Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B: Condens. Matter 64, 189–193 (1986).

    ADS 

    Google Scholar
     

  • Norman, M. R. Materials design for new superconductors. Rep. Prog. Phys. 79, 074502 (2016).

    ADS 

    Google Scholar
     

  • Azuma, M., Hiroi, Z., Takano, M., Bando, Y. & Takeda, Y. Superconductivity at 110 K in the infinite-layer compound (Sr1-xCax)1-yCuO2. Nature 356, 775–776 (1992).

    ADS 

    Google Scholar
     

  • Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

    ADS 

    Google Scholar
     

  • Lee, K.-W. & Pickett, W. E. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    ADS 

    Google Scholar
     

  • Crespin, M., Levitz, P. & Gatineau, L. Reduced forms of LaNiO3 perovskite. Part 1.—Evidence for new phases: La2Ni2O5 and LaNiO2. J. Chem. Soc. Faraday Trans. 79, 1181–1194 (1983).


    Google Scholar
     

  • Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for yopotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).


    Google Scholar
     

  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    ADS 

    Google Scholar
     

  • Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    ADS 

    Google Scholar
     

  • Li, Q. et al. Signature of superconductivity in pressurized La4Ni3O10. Chin. Phys. Lett. 41, 017401 (2024).

    ADS 

    Google Scholar
     

  • Zhu, Y. et al. Superconductivity in tri-layer nickelate La4Ni3O10 single crystals. Nature 631, 531–536 (2024).


    Google Scholar
     

  • Zhang, M. et al. Superconductivity in tri-layer nickelate La4Ni3O10 under pressure. Phys. Rev. X 15, 021005 (2025).


    Google Scholar
     

  • Sakakibara, H. et al. Theoretical analysis on the possibility of superconductivity in the tri-layer Ruddlesden‒Popper nickelate La4Ni3O10 under pressure and its experimental examination: comparison with La3Ni2O7. Phys. Rev. B 109, 144511 (2024).

    ADS 

    Google Scholar
     

  • Dan, Z. et al. Pressure-enhanced spin-density-wave transition in double-layer nickelate La3Ni2O7−δ. Sci. Bull. 70, 1239–1245 (2025).


    Google Scholar
     

  • Chen, K. et al. Evidence of spin density waves in La3Ni2O7−δ. Phys. Rev. Lett. 132, 256503 (2024).


    Google Scholar
     

  • Zhang, J. et al. Intertwined density waves in a metallic nickelate. Nat. Commun. 11, 6003 (2020).

    ADS 

    Google Scholar
     

  • Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behavior in La3Ni2O7−δ. Nat. Phys. 20, 1269–1273 (2024).


    Google Scholar
     

  • Li, F. et al. Design and synthesis of three-dimensional hybrid Ruddlesden‒Popper nickelate single crystals. Phys. Rev. Mater. 8, 053401 (2024).


    Google Scholar
     

  • Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).


    Google Scholar
     

  • Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. 133, 146002 (2024).


    Google Scholar
     

  • Shulga, S. V. et al. Upper critical field peculiarities of superconducting YNi2B2C and LuNi2B2C. Phys. Rev. Lett. 80, 1730 (1998).

    ADS 

    Google Scholar
     

  • Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).


    Google Scholar
     

  • Shi, M. et al. Absence of superconductivity and density-wave transition in ambient-pressure tetragonal La4Ni3O10. Nat. Commun. 16, 2887 (2025).


    Google Scholar
     

  • Shi, M. et al. Prerequisite of superconductivity: SDW rather than tetragonal structure in double-layer La3Ni2O7−x. Preprint at https://arxiv.org/abs/2501.14202 (2025).

  • Li, J. et al. Identification of the superconductivity in bilayer nickelate La3Ni2O7 upon 100 GPa. Natl Sci. Rev. 12, nwaf220 (2025).


    Google Scholar
     

  • Liu, Y. et al. Superconductivity and normal-state transport in compressively strained La2PrNi2O7 thin films. Nat. Mater. 24, 1221–1227 (2025).


    Google Scholar
     

  • Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in (La,Pr)3Ni2O7 films. Nature 640, 641–646 (2025).


    Google Scholar
     

  • Thanh, T. D. et al. Structure, magnetic, and electrical properties of La2NiO4+δ compounds. IEEE Trans. Magn. 53, 8204904 (2017).


    Google Scholar
     

  • Prozorov, R. & Kogan, V. G. Effective demagnetizing factors of diamagnetic samples of various shapes. Phys. Rev. App. 10, 014030 (2018).


    Google Scholar
     

  • Wang, G. et al. Pressure-induced superconductivity in poly-crystalline La3Ni2O7−δ. Phys. Rev. X 14, 011040 (2024).


    Google Scholar
     

  • Shi, M. et al. Pressure induced superconductivity in hybrid Ruddlesden‒Popper La5Ni3O11 single crystals. Raw Data. figshare https://doi.org/10.6084/m9.figshare.29484635 (2025).