• Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Grissonnanche, G. et al. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors. Nature 571, 376–380 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108–1111 (2020).

    Article 

    Google Scholar
     

  • Li, X., Fauqué, B., Zhu, Z. & Behnia, K. Phonon thermal Hall effect in strontium titanate. Phys. Rev. Lett. 124, 105901 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).

    Article 

    Google Scholar
     

  • Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5991–5996 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hernandez, F. G. G. et al. Observation of interplay between phonon chirality and electronic band topology. Sci. Adv. 9, eadj407 (2023).

    Article 

    Google Scholar
     

  • Mustafa, H. et al. Origin of large effective phonon magnetic moments in monolayer MoS2. ACS Nano 19, 11241–11248 (2025).

    Article 

    Google Scholar
     

  • Wu, F. et al. Fluctuation-enhanced phonon magnetic moments in a polar antiferromagnet. Nat. Phys. 19, 1868–1875 (2023).

    Article 

    Google Scholar
     

  • Lujan, D. et al. Spin–orbit exciton-induced phonon chirality in a quantum magnet. Proc. Natl Acad. Sci. USA 121, e2304360121 (2024).

    Article 

    Google Scholar
     

  • Mai, T. T. et al. Spin-orbital–lattice coupling and the phonon Zeeman effect in the Dirac honeycomb magnet CoTiO3. Phys. Rev. B 111, 104419 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Chen, L. et al. Planar thermal Hall effect from phonons in a Kitaev candidate material. Nat. Commun. 15, 3513 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Che, M. et al. Magnetic order induced chiral phonons in a ferromagnetic Weyl semimetal. Phys. Rev. Lett. 134, 196906 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas Effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Dornes, C. et al. The ultrafast Einstein-de Haas effect. Nature 565, 209–212 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Choi, I. H. et al. Real-time dynamics of angular momentum transfer from spin to acoustic chiral phonon in oxide heterostructures. Nat. Nanotechnol. 19, 1277–1282 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    Article 

    Google Scholar
     

  • Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Res. 2, 043035 (2020).

    Article 

    Google Scholar
     

  • Juraschek, D. M., Neuman, T. & Narang, P. Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).

    Article 

    Google Scholar
     

  • Geilhufe, R. M., Juričić, V., Bonetti, S., Zhu, J.-X. & Balatsky, A. V. Dynamically induced magnetism in KTaO3. Phys. Rev. Res. 3, L022011 (2021).

    Article 

    Google Scholar
     

  • Luo, J. et al. Large effective magnetic fields from chiral phonons in rare-earth halides. Science 382, 698–702 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Basini, M. et al. Terahertz electric-field-driven dynamical multiferroicity in SrTiO3. Nature 628, 534–539 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Davies, C. S. et al. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 628, 540–544 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).

    Article 

    Google Scholar
     

  • Ishito, K. et al. Chiral phonons: circularly polarized Raman spectroscopy and ab initio calculations in a chiral crystal tellurium. Chirality 35, 338–345 (2023).

    Article 

    Google Scholar
     

  • Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Romao, C. P. & Juraschek, D. M. Phonon-induced geometric chirality. ACS Nano 18, 29550–29557 (2024).

    Article 

    Google Scholar
     

  • Barron, L. D. Molecular Light Scattering and Optical Activity 2nd edn (Cambridge Univ. Press, 2004).

  • Coh, S. Classification of materials with phonon angular momentum and microscopic origin of angular momentum. Phys. Rev. B 108, 134307 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, T. & Murakami, S. Chiral phonons and pseudoangular momentum in nonsymmorphic systems. Phys. Rev. Res. 4, L012024 (2022).

    Article 

    Google Scholar
     

  • Zhang, S. et al. Comprehensive study of phonon chirality under symmetry constraints. Preprint at https://arxiv.org/abs/2503.22794 (2025).

  • Fava, M., McCabe, E., Romero, A. H. & Bousquet, E. Phonon-driven mechanism for the chiral phase transition of K3NiO2. Phys. Rev. B 111, 174102 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S., Luo, K. & Zhang, T. Understanding chiral charge-density wave by frozen chiral phonon. npj Comput. Mater. 10, 264 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, Z. et al. Photo-induced chirality in a non-chiral crystal. Science 387, 431–436 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Inda, A., Oiwa, R., Hayami, S., Yamamoto, H. M. & Kusunose, H. Quantification of chirality based on electric toroidal monopole. J. Chem. Phys. 160, 184117 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Rostami, H., Guinea, F. & Cappelluti, E. Strain-driven chiral phonons in two-dimensional hexagonal materials. Phys. Rev. B 105, 195431 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cappelluti, E., Silva-Guillén, J. A., Rostami, H. & Guinea, F. Flat-band optical phonons in twisted bilayer graphene. Phys. Rev. B 108, 125401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Parlak, S., Ghosh, S. & Garate, I. Detection of phonon helicity in nonchiral crystals with Raman scattering. Phys. Rev. B 107, 104308 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Boulanger, M.-E. et al. Thermal Hall conductivity in the cuprate Mott insulators Nd2CuO4 and Sr2CuO2Cl2. Nat. Commun. 11, 5325 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Flebus, B. & MacDonald, A. H. Charged defects and phonon Hall effects in ionic crystals. Phys. Rev. B 105, L220301 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Oh, T. & Nagaosa, N. Phonon thermal Hall effect in Mott insulators via skew-scattering by the scalar spin chirality. Phys. Rev. X 15, 11036 (2024).


    Google Scholar
     

  • Zhang, L., Ren, J., Wang, J. S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Flebus, B. & MacDonald, A. H. Phonon Hall viscosity of ionic crystals. Phys. Rev. Lett. 131, 236301 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Park, S. & Yang, B.-J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694–7699 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chen, H. et al. Chiral phonon diode effect in chiral crystals. Nano Lett. 22, 1688–1693 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322–328 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ohe, K. et al. Chirality-induced selectivity of phonon angular momenta in chiral quartz crystals. Phys. Rev. Lett. 132, 056302 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Funato, T., Matsuo, M. & Kato, T. Chirality-induced phonon-spin conversion at an interface. Phys. Rev. Lett. 132, 236201 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Yang, C. & Ren, J. Chirality-induced phonon spin selectivity by elastic spin–orbit interaction. Proc. Natl Acad. Sci. USA 121, e2411427121 (2024).

    Article 

    Google Scholar
     

  • Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).

    Article 

    Google Scholar
     

  • Korenev, V. L. et al. Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure. Nat. Phys. 12, 85–91 (2016).

    Article 

    Google Scholar
     

  • Jeong, S. G. et al. Unconventional interlayer exchange coupling via chiral phonons in synthetic magnetic oxide heterostructures. Sci. Adv. 8, eabm4005 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Romao, C. P. Anomalous thermal expansion and chiral phonons in BiB3O6. Phys. Rev. B 100, 060302 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mentink, J. H., Katsnelson, M. I. & Lemeshko, M. Quantum many-body dynamics of the Einstein-de Haas effect. Phys. Rev. B 99, 064428 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mankovsky, S. et al. Angular momentum transfer via relativistic spin-lattice coupling from first principles. Phys. Rev. Lett. 129, 067202 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Weißenhofer, M. et al. Rotationally invariant formulation of spin-lattice coupling in multi-scale modeling. Phys. Rev. B 108, L060404 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shokeen, V. et al. Real-time observation of non-equilibrium phonon-electron energy and angular momentum flow in laser-heated nickel. Sci. Adv. 10, eadj2407 (2024).

    Article 

    Google Scholar
     

  • Gao, L., Prokhorenko, S., Nahas, Y. & Bellaiche, L. Dynamical multiferroicity and magnetic topological structures induced by the orbital angular momentum of light in a nonmagnetic material. Phys. Rev. Lett. 131, 196801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shabala, N. & Geilhufe, R. M. Phonon inverse Faraday effect from electron-phonon coupling. Phys. Rev. Lett. 133, 266702 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Minakova, O. et al. Direct observation of angular momentum transfer among crystal lattice modes. Preprint at https://arxiv.org/abs/2503.11626 (2025).

  • Chaudhary, S., Juraschek, D. M., Rodriguez-Vega, M. & Fiete, G. A. Giant effective magnetic moments of chiral phonons from orbit-lattice coupling. Phys. Rev. B 110, 094401 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kusunose, H., Kishine, J. & Yamamoto, H. M. Emergence of chirality from electron spins, physical fields, and material-field composites. Appl. Phys. Lett. 124, 260501 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, T. et al. Weyl phonons in chiral crystals. Nano Lett. 23, 7561–7567 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X.-W., Ren, Y., Wang, C., Cao, T. & Xiao, D. Gate-tunable phonon magnetic moment in bilayer graphene. Phys. Rev. Lett. 130, 226302 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Klebl, L. et al. Ultrafast pseudomagnetic fields from electron-nuclear quantum geometry. Phys. Rev. Lett. 134, 016705 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Bonini, J. et al. Frequency splitting of chiral phonons from broken time-reversal symmetry in CrI3. Phys. Rev. Lett. 130, 086701 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ren, S., Bonini, J., Stengel, M., Dreyer, C. E. & Vanderbilt, D. Adiabatic dynamics of coupled spins and phonons in magnetic insulators. Phys. Rev. X 14, 011041 (2024).


    Google Scholar
     

  • Wu, F. et al. Magnetic switching of phonon angular momentum in a ferrimagnetic insulator. Phys. Rev. Lett. 134, 236701 (2025).

  • Yang, R. et al. Inherent circular dichroism of phonons in magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Lett. 134, 196905 (2025).

  • Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

    Article 

    Google Scholar
     

  • Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Geilhufe, R. M. Dynamic electron-phonon and spin-phonon interactions due to inertia. Phys. Rev. Res. 4, L012004 (2022).

    Article 

    Google Scholar
     

  • Fransson, J. Chiral phonon induced spin polarization. Phys. Rev. Res. 5, L022039 (2023).

    Article 

    Google Scholar
     

  • Yao, D. & Murakami, S. Theory of spin magnetization driven by chiral phonons. Phys. Rev. B 111, 134414 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Chen, W. et al. Gauge theory of giant phonon magnetic moment in doped Dirac semimetals. Phys. Rev. B 111, 035126 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Merlin, R. Magnetophononics and the chiral phonon misnomer. PNAS Nexus 4, pgaf002 (2024).

    Article 

    Google Scholar
     

  • Geilhufe, R. M. & Hergert, W. Electron magnetic moment of transient chiral phonons in KTaO3. Phys. Rev. B 107, L020406 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, X. et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 15, 221–227 (2019).

    Article 

    Google Scholar