• Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Errington, T. M., Denis, A., Perfito, N., Iorns, E. & Nosek, B. A. Reproducibility in cancer biology: challenges for assessing replicability in preclinical cancer biology. eLife 10, e67995 (2021).

    Article 

    Google Scholar
     

  • Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    Article 

    Google Scholar
     

  • Baker, M. & Dolgin, E. Cancer reproducibility project releases first results. Nature 541, 269 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Johansson, P. et al. Ten ways to fool the masses when presenting battery research. Batteries Supercaps 4, 1785–1788 (2021).

    Article 

    Google Scholar
     

  • Boggild, P. Research on scalable graphene faces a reproducibility gap. Nat. Commun. 14, 1126 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lanza, M., Smets, Q., Huyghebaert, C. & Li, L. J. Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kauling, A. P. et al. The worldwide graphene flake production. Adv. Mater. 30, 1803784 (2018).

    Article 

    Google Scholar
     

  • Chatterjee, S., Abadie, T., Wang, M. H., Matar, O. K. & Ruoff, R. S. Repeatability and reproducibility in the chemical vapor deposition of 2D films: a physics-driven exploration of the reactor black box. Chem. Mater. 36, 1290–1298 (2024).

    Article 

    Google Scholar
     

  • Amontree, J. et al. Reproducible graphene synthesis by oxygen-free chemical vapour deposition. Nature 630, 636–642 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Guo, W., Wu, B., Wang, S. & Liu, Y. Q. Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 12, 1778–1784 (2018).

    Article 

    Google Scholar
     

  • Turner, P. et al. International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene. 2D Mater. 9, 035010 (2022).

    Article 

    Google Scholar
     

  • Mackenzie, D. M. A. et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt. Express 26, 9220–9229 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Fan, Y. et al. Recent advances in growth of large-sized 2D single crystals on Cu substrates. Adv. Mater. 33, e2003956 (2021).

    Article 

    Google Scholar
     

  • Wittmann, S. et al. Assessment of wafer-level transfer techniques of graphene with respect to semiconductor industry requirements. Adv. Mater. Technol. 8, 2201587 (2023).

    Article 

    Google Scholar
     

  • Cheng, Z. H. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, Z. H. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 620–620 (2022).

    Article 

    Google Scholar
     

  • McClellan, C. J. et al. 2D Device Trends (Stanford, accessed 17 April 2025); http://2d.stanford.edu/2D_Trends.html.

  • Díez-Mérida, J. et al. High-yield fabrication of bubble-free magic-angle twisted bilayer graphene devices with high twist angle homogeneity. Newton 1, 100007 (2025).

    Article 

    Google Scholar
     

  • Canto, B. et al. Multi-project wafer runs for electronic graphene devices in the European 2D-experimental pilot line project. Nat. Commun. 16, 1417 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Nosek, B. et al. Reproducibility and transparency: what’s going on and how can we help. Nat. Commun. 16, 1082 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Munafò, M. Raising research quality will require collective action. Nature 576, 183–183 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kent, B. A. et al. Recommendations for empowering early career researchers to improve research culture and practice. PLoS Biol. 20, e3001680 (2022).

    Article 

    Google Scholar
     

  • Higginson, A. D. & Munafò, M. R. Current incentives for scientists lead to underpowered studies with erroneous conclusions. PLoS Biol. 14, e2000995 (2016).

    Article 

    Google Scholar
     

  • Gammelgaard, L., Whelan, P. R., Booth, T. J. & Boggild, P. Long-term stability and tree-ring oxidation of WSe2 using phase-contrast AFM. Nanoscale 13, 19238–19246 (2021).

    Article 

    Google Scholar
     

  • Johann, D., Neufeld, J., Thomas, K., Rathmann, J. & Rauhut, H. The impact of researchers’ perceived pressure on their publication strategies. Res. Eval. https://doi.org/10.1093/reseval/rvae011 (2024).

  • Smith, A. Who discovered the magnetocaloric effect? Eur. Phys. J. H. 38, 507–517 (2013).

    Article 

    Google Scholar
     

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moire materials. Nature 602, 41–50 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kapfer, M. et al. Programming twist angle and strain profiles in 2D materials. Science 381, 677–681 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Knoepfler, P. Reviewing post-publication peer review. Trends Genet. 31, 221–223 (2015).

    Article 

    Google Scholar
     

  • Dance, A. Stop the peer-review treadmill. I want to get off. Nature 614, 581–583 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Woolston, C. Workplace habits: full-time is full enough. Nature 546, 175–177 (2017).

    Article 

    Google Scholar
     

  • Promoting reproducibility with registered reports. Nat. Hum. Behav. 1, 0034 (2017).

  • Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 

    Google Scholar
     

  • Clifford, C. A. et al. The importance of international standards for the graphene community. Nat. Rev. Phys. 3, 233–235 (2021).

    Article 

    Google Scholar
     

  • The Danish Code of Conduct for Research Integrity. https://ufm.dk/en/publications/2014/the-danish-code-of-conduct-for-research-integrity (accessed 6 June 2025). The European Code of Conduct for Research Integrity. https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/european-code-of-conduct-for-research-integrity_horizon_en.pdf (accessed 6 June 2025).

  • Go forth and replicate! Nature 536, 373 (2016).

  • Begley, C. G., Buchan, A. M. & Dirnagl, U. Robust research institutions must do their part for reproducibility. Nature 525, 25–27 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shiffrin, R. M., Börner, K. & Stigler, S. M. Scientific progress despite irreproducibility: a seeming paradox. Proc. Natl Acad. Sci. USA 115, 2632–2639 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, Y. et al. On the quality of commercial chemical vapour deposited hexagonal boron nitride. Nat. Commun. 15, 4518 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Whelan, P. R. et al. Electrical homogeneity mapping of epitaxial graphene on silicon carbide. ACS Appl. Mater. Interfaces 10, 31641–31647 (2018).

    Article 

    Google Scholar
     

  • Consort 2010. Lancet 375, 1136 (2010).

  • von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370, 1453–1457 (2007).

    Article 

    Google Scholar