• CBD Convention on Biological Diversity. Kunming-Montreal Global Biodiversity Framework. 18 Dec. CBD/COP/15/L.25 (2022).

  • Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol. 5, 251 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause, S. et al. Microbial trait-based approaches for agroecosystems. Adv. Agron. 175, 259–299 (2022).


    Google Scholar
     

  • Bánki, O. et al. Catalogue of Life (Version 2025-05-13). (Catalogue of Life, Amsterdam, Netherlands, accessed 11 June 2025) https://doi.org/10.48580/dgqdn.

  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. & Worm, B. How many species are there on Earth and in the ocean? Plos Biol. 9, e1001127 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiens, J. J. How many species are there on Earth? Progress and problems. Plos Biol. 21, e3002388 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, B. B., Miller, E. C., Rhodes, M. K. & Wiens, J. J. Inordinate fondness multiplied and redistributed: the number of species on earth and the new pie of life. Q. Rev. Biol. 92, 229–265 (2017).


    Google Scholar
     

  • Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 113, 5970–5975 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. W. A census-based estimate of Earth’s bacterial and archaeal diversity. Plos Biol. 17, e3000106 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    CAS 

    Google Scholar
     

  • Hawksworth, D. L. & Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, funk-0052–funk-2016 (2017).


    Google Scholar
     

  • Niskanen, T. et al. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Env. Resour. 48, 149–176 (2023).


    Google Scholar
     

  • Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C. & Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Micr. 70, 5607–5612 (2020).


    Google Scholar
     

  • Foissner, W. Protist diversity and distribution: some basic considerations. Biodivers. Conserv. 17, 235–242 (2008).

  • Adl, S. M. Protistology (Elsevier, 2024).

  • Burki, F., Sandin, M. M. & Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr. Biol. 31, R1267–R1280 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Grossmann, L. et al. Protistan community analysis: key findings of a large-scale molecular sampling. ISME J. 10, 2269–2279 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlowski, J. et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10, e1001419 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. & Wiens, J. J. Estimating global biodiversity: the role of cryptic insect species. Syst. Biol. 72, 391–403 (2023).

    PubMed 

    Google Scholar
     

  • Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Srivathsan, A. et al. Convergence of dominance and neglect in flying insect diversity. Nat. Ecol. Evol. 7, 1012–1021 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (2024).

  • Overmann, J., Abt, B. & Sikorski, J. Present and future of cultivating bacteria. Annu. Rev. Microbiol. 71, 711–730 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323 (2006).


    Google Scholar
     

  • Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).


    Google Scholar
     

  • Zedda, L. & Rambold, G. in Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2 (eds Upreti, D. K., Divakar, P. K., Shukla, V. & Bajpai, R.) 121–145 (Springer, 2015).

  • Guerra, C. A. et al. Foundations for a national assessment of soil biodiversity. J. Sustain. Agric. Environ. 3, e12116 (2024).


    Google Scholar
     

  • Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1148 (IPBES secretariat, Bonn, 2019).

  • Ceballos, G. & Ehrlich, P. R. Mutilation of the tree of life via mass extinction of animal genera. Proc. Natl. Acad. Sci. USA 120, e2306987120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed 

    Google Scholar
     

  • Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed 

    Google Scholar
     

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wirth, C., Bruelheide, H., Farwig, N., Marx, J. M. & Settele, J. Faktencheck Artenvielfalt (Oekom Verlag, 2024).

  • Antonelli, A. et al. State of the World’s Plants and Fungi 2023 (Royal Botanic Gardens, 2023).

  • Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).

    PubMed 

    Google Scholar
     

  • Ondo, I. et al. Plant diversity darkspots for global collection priorities. New Phytol. 244, 719–733 (2024).

  • Mammola, S. et al. Perspectives and pitfalls in preserving subterranean biodiversity through protected areas. npj Biodiv. 3, 2 (2024).


    Google Scholar
     

  • https://www.protectedplanet.net/country/DEU date of access: 30.07.2025.

  • Venter, O. et al. Bias in protected-area location and its effects on longterm aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2017).

    PubMed 

    Google Scholar
     

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabala, A., Palomo, I., Múgica, M., & Montes, C. Challenges beyond reaching a 30% of area protection. npj Biodiv. 3, 9 (2024).

  • Willis, K. J. et al. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philos. T. R. Soc. B 362, 175–187 (2007).


    Google Scholar
     

  • Jeschke, J. M. et al. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haubrock, P. J. et al. Germany’s established non-native species: a comprehensive breakdown. Environ. Sci. Eur. 37, 56 (2025).


    Google Scholar
     

  • COM. EU Biodiversity Strategy for 2030. Bringing nature back into our lives. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the committee of the Regions. 380 pp. (Brusselles, 2020).

  • Union, E. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on nature restoration and amending Regulation (EU) 2022/869. Off. J. Eur. Union 1991, 1 (2024).


    Google Scholar
     

  • Hochkirch, A. et al. European red list of insect taxonomists. Publication Office of the European Union, Luxembourg (2022).

  • Páll-Gergely, B. et al. Identification crisis: a fauna-wide estimate of biodiversity expertise shows massive decline in a Central European country. Biodivers. Conserv. 33, 3871–3903 (2024).


    Google Scholar
     

  • Hofmann, G., Lange-Bertalot, H., Werum, M. & Klee, R. Rote Liste und Gesamtartenliste der limnischen Kieselalgen (Bacillariophyta) Deutschlands. In Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands 7 (eds. Metzing, D., Hofbauer, N., Ludwig, G. & Matzke-Hajek, G.) 601–708 (Landwirtschaftsverlag, Münster, Naturschutz und Biologische Vielfalt 70, 2018).

  • Wirth et al. Rote Liste und Artenverzeichnis der Flechten und flechtenbewohnenden Pilze Deutschlands. Naturschutz Biol. Vielfalt 70, 7–122 (2011).


    Google Scholar
     

  • Printzen, C. et al. Die Flechten, flechtenbewohnenden und flechtenähnlichen Pilze Deutschlands–eine überarbeitete Checkliste. Herzogia 35, 193–393 (2022).


    Google Scholar
     

  • Buchner, D. et al. Upscaling biodiversity monitoring: Metabarcoding estimates 31,846 insect species from Malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2025).

    PubMed 

    Google Scholar
     

  • Chimeno, C. et al. Peering into the darkness: DNA barcoding reveals surprisingly high diversity of unknown species of Diptera (Insecta) in Germany. Insects 13, 82 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, D., Forshage, M., Holston, K. & Ronquist, F. The data of the Swedish Malaise Trap Project, a countrywide inventory of Sweden’s insect fauna. Biodiv. Data J. 8, e56286 (2020).

  • Roume, H. et al. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biof. Microb. 1, 1–11 (2015).


    Google Scholar
     

  • Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers. Conserv. 19, 3035–3048 (2010).


    Google Scholar
     

  • Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anthony, M. A., Bender, S. F. & van der Heijden, M. G. Enumerating soil biodiversity. Proc. Natl. Acad. Sci. USA 120, e2304663120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).

  • Leibniz Research Network Biodiversity. 10 Must Knows from Biodiversity Science (Thonicke, K. et al.) https://doi.org/10.5281/zenodo.10837769 (Potsdam, Germany, 2024).

  • Hohberg, K., Ristok, C., Eisenhauer, N., Tebbe, C. C. & Scheu, S. Status and trends in soil biodiversity – a national survey of Germany: – This paper is part of the special collection ‘Faktencheck Artenvielfalt’. Soil Org. https://doi.org/10.25674/449 (2025).

    Article 

    Google Scholar
     

  • Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Sturhan, D. & Hohberg, K. Nematodes of the order Tylenchida in Germany–the non-phytoparasitic species. Soil Org. 88, 19–41 (2016).


    Google Scholar
     

  • Andrássy, I. Pedozoologica Hungarica Vol. 3 (eds Csuzdi, C. & Mahunka, S.) 518 (Hungarian Natural History Museum, 2005).

  • Weigmann, G., Horak, F., Franke, K. & Christian, A. Verbreitung und Ökologie der Hornmilben (Oribatida) in Deutschland. Peckiana 10, 1–171 (2015).


    Google Scholar
     

  • Lehmitz, R. et al. Rote Liste und Gesamtartenliste der Regenwürmer (Lumbricidae et Criodrillidae) Deutschlands. Naturschutz und Biologische Vielfalt 70, 565−590 (2016).

  • Szederjesi, T., Höser, N., Walter, R. & Csuzdi, C. Helodrilus bavaricus, a remarkable new earthworm species from Bavaria, Germany (Crassiclitellata, Lumbricidae). Opusc. Zool. 55, 105−108 (2024).

  • Pauls, S. U., Graf, W., Haase, P., Lumbsch, H. T. & Waringer, J. Grazers, shredders and filtering carnivores—the evolution of feeding ecology in Drusinae (Trichoptera: Limnephilidae): insights from a molecular phylogeny. Mol. Phylogenet. Evol. 46, 776–791 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Oláh, J., Vinçon, G., & Coppa, G. On the Trichoptera of Italy with delineation of incipient sibling species. Opusc. Zool. 52, 3−67 (2021).

  • Li, M. et al. The diversity and biogeography of bacterial communities in lake sediments across different climate zones. Environ. Res. 263, 120028 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Rossel, S. & Martínez Arbizu, P. Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Sci. Rep. 9, 9182 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armonies, W. et al. Microscopic species make the diversity: a checklist of marine flora and fauna around the Island of Sylt in the North Sea. Helgol. Mar. Res. 72, 11 (2018).


    Google Scholar
     

  • Mielke, W. Systematik der Copepoda eines Sandstrandes der Nordseeinsel Sylt. Vol. 52 (Akademie der Wiss. und Literatur, 1975).

  • Linné, C. v. Species plantarum :exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae: Impensis Laurentii Salvii (1753).

  • Darwin, C., Hooker, J. D., Jackson, B. D. & Royal Botanic Gardens, K. Index Kewensis Plantarum Phanerogamarum – Nomina et synonyma omnium generum et specierum a Linnaeo usque ad annum MDCCCLXXXV complectens nomine recepto auctore patria unicuique plantae subjectis. Vol. 1-pt. 1–2 (1893).

  • Albertini, J. B. v. & Schweinitz, L. D. v. Conspectus fungorum in Lusatiae Superioris agro Niskiensi crescentium, e methodo Persooniana. Lipsiae: Sumtibus Kummerianis (1805).

  • Wührl, L. et al. DiversityScanner: robotic handling of small invertebrates with machine learning methods. Mol. Ecol. Resour. 22, 1626–1638 (2022).

    PubMed 

    Google Scholar
     

  • Wührl, L. et al. in 2023 3rd International Conference on Robotics, Automation and Artificial Intelligence (RAAI) 226–230 (IEEE, 2023).

  • Klug, N. et al. Automated photogrammetric close-range imaging system for small invertebrates using acoustic levitation. Authorea Preprints, (2024).

  • Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evol. 9, 2216–2225 (2018).


    Google Scholar
     

  • Yang, B. et al. Identification of species by combining molecular and morphological data using convolutional neural networks. Syst. Biol. 71, 690–705 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Srivathsan, A. et al. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 1–21 (2021).


    Google Scholar
     

  • Collins, G. et al. The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun. Biol. 6, 1241 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossel, S. et al. A universal tool for marine metazoan species identification: towards best practices in proteomic fingerprinting. Sci. Rep. 14, 1280 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hersch-Green, E. I., Turley, N. E. & Johnson, M. T. Community genetics: what have we accomplished and where should we be going? Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1453–1460 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartop, E., Srivathsan, A., Ronquist, F. & Meier, R. Towards large-scale integrative taxonomy (LIT): resolving the data conundrum for dark taxa. Syst. Biol. 71, 1404–1422 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez-Triana, J. L. Turbo taxonomy approaches: lessons from the past and recommendations for the future based on the experience with Braconidae (Hymenoptera) parasitoid wasps. ZooKeys 1087, 199 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raupach, M. J., Amann, R., Wheeler, Q. D. & Roos, C. The application of “-omics” technologies for the classification and identification of animals. Org. Divers. Evol. 16, 1–12 (2016).


    Google Scholar
     

  • Meier, R. et al. “Dark taxonomy”: a new protocol for overcoming the taxonomic impediments for dark taxa and broadening the taxon base for biodiversity assessment. Cladistics, (2023).

  • Milošević, D. et al. Unsupervised deep clustering as a tool for the identification of dark taxa in biomonitoring. Environ. Monit. Assess 197, 858 (2025).

    PubMed 

    Google Scholar
     

  • Melcher, A. C., Weber, S., Birkhofer, K., Harms, D. & Krehenwinkel, H. To pool or not to pool: pooled metabarcoding does not affect estimates of prey diversity in spider gut content analysis. Ecol. Entomol. 49, 768–778 (2024).


    Google Scholar
     

  • Schmidt, A. et al. Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties. Ecol. Evol. 12, e8991 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, K. R., Owens, I. F. & Group, G. C. A global approach for natural history museum collections. Science 379, 1192–1194 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Bebber, D. P. et al. Herbaria are a major frontier for species discovery. Proc. Natl. Acad. Sci. USA 107, 22169–22171 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lücking, R. et al. Cora timucua (Hygrophoraceae), a new and potentially extinct, previously misidentified basidiolichen of Florida inland scrub documented from historical collections. Bryologist 123, 657–673 (2020).


    Google Scholar
     

  • Sigwart, J. D. et al. Collectomics – towards a new framework to integrate museum collections to address global challenges. Nat. Hist. Collect. Museomics 2, 1–20 (2025).

  • Tosa et al. The rapid rise of next-generation natural history. Front. Ecol. Evol. 9, 698131 (2021).


    Google Scholar
     

  • Ellwood, E. R. et al. Worldwide engagement for digitizing biocollections (WeDigBio): The biocollections community’s citizen-science space on the calendar. Bioscience 68, 112–124 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Konrat, M. et al. Using citizen science to bridge taxonomic discovery with education and outreach. Appl. Plant Sci. 6, e1023 (2018).


    Google Scholar
     

  • Singer, D. et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Geisen, M. J. I. et al. A methodological framework to embrace soil biodiversity. Soil Biol. Biochem. 136, 107536 (2019).

    CAS 

    Google Scholar
     

  • Potapov, A., Lindo, Z., Buchkowski, R. & Geisen, S. Multiple dimensions of soil food-web research: History and prospects. Eur. J. Soil Biol. 117, 103494 (2023).


    Google Scholar
     

  • Muelbaier, H. et al. Genomic evidence for the widespread presence of GH45 cellulases among soil invertebrates. Mol. Ecol. 33, e17351 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Sikorski, J. et al. The evolution of ecological diversity in Acidobacteria. Front. Microbiol. 13, 715637 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sys, S., Weißbach, S., Jakob, L., Gerber, S. & Schneider, C. CollembolAI, a macrophotography and computer vision workflow to digitize and characterize samples of soil invertebrate communities preserved in fluid. Methods Ecol. Evol. 13, 2729–897–2742. 898 (2022).


    Google Scholar
     

  • Schneider, S. et al. Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision. Methods Ecol. Evol. 13, 346–357 (2022).


    Google Scholar
     

  • Filgueiras, C. C. et al. The smart soil organism detector: an instrument and machine learning pipeline for soil species identification. Biosens. Bioelectron. 221, 114417 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Feng, X. et al. A review of the heterogeneous landscape of biodiversity databases: opportunities and challenges for a synthesized biodiversity knowledge base. Glob. Ecol. Biogeogr. 31, 1242–1260 (2022).


    Google Scholar
     

  • Reimer, L. C. et al. Bac Dive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res. 50, D741–D746 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Russell, D. et al. Edaphobase 2.0: advanced international data warehouse for collating and using soil biodiversity datasets. Appl. Soil Ecol. 204, 105710 (2024).

  • Borsch, T. et al. World flora online: placing taxonomists at the heart of a definitive and comprehensive global resource on the world’s plants. TAXON 69, 1311–1341 (2020).


    Google Scholar
     

  • Hobern, D. et al. Towards a global list of accepted species VI: the Catalogue of Life checklist. Org. Divers. Evol. 21, 677–690 (2021).


    Google Scholar