• Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 35, 2303139 (2023).


    Google Scholar
     

  • Wang, F. et al. Two-step perovskite solar cells with >25% efficiency: unveiling the hidden bottom surface of perovskite layer. Adv. Mater. 36, 2401476 (2024).

    Article 

    Google Scholar
     

  • Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, S. et al. Crystallization in one-step solution deposition of perovskite films: upward or downward? Sci. Adv. 7, eabb2412 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, Y., Yang, X., Zhu, R. & Snaith, H. J. Unlocking interfaces in photovoltaics. Science 384, 846–848 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Shi, P. J. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Z. et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gao, Y. et al. Controlled nucleation and oriented crystallization of methylammonium-free perovskites via in situ generated 2D perovskite phases. Adv. Mater. 36, 2405921 (2024).

    Article 

    Google Scholar
     

  • Azmi, R. et al. Double-side 2-dimensional/3-dimensional heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. Y. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. et al. Highly oriented FAPbI3 via 2D Ruddlesden Popper perovskite template growth. Adv. Energy Mater. 14, 2401721 (2024).

    Article 

    Google Scholar
     

  • Li, Q. et al. Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells. Nat. Energy 9, 1506–1516 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Song, S. et al. Molecular engineering of organic spacer cations for efficient and stable formamidinium perovskite solar cell. Adv. Energy Mater. 10, 2001759 (2020).

    Article 

    Google Scholar
     

  • Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules. eScience 4, 100308 (2024).

    Article 

    Google Scholar
     

  • Zhou, T. et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, 2200705 (2022).

    Article 

    Google Scholar
     

  • Zhang, C. et al. Work function tuning of a weak adhesion homojunction for stable perovskite solar cells. Joule 8, 1394–1411 (2024).

    Article 

    Google Scholar
     

  • Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Meng, R. et al. Solvent bath annealing-induced liquid phase Ostwald ripening enabling efficient and stable perovskite solar cells. J. Mater. Chem. A 11, 4780–4788 (2023).

    Article 

    Google Scholar
     

  • Li, N. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C. et al. Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633, 359–364 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, K. et al. Highly efficient and stable FAPbI3 perovskite solar cells and modules based on exposure of the (011) facet. Nano-Micro Lett. 15, 138 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    Article 

    Google Scholar
     

  • Jennings, W. B., Farrell, B. M. & Malone, J. F. Attractive intramolecular edge-to-face aromatic interactions in flexible organic molecules. Acc. Chem. Res. 34, 885–894 (2001).

    Article 

    Google Scholar
     

  • Bai, M. et al. A donor-acceptor-donor structured organic conductor with S···S chalcogen bonding. Cryst. Growth Des. 14, 459–466 (2014).

    Article 

    Google Scholar
     

  • Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shao, J.-Y. et al. Recent progress in perovskite solar cells: material science. Sci. China Chem. 66, 10–64 (2022).

    Article 

    Google Scholar
     

  • Liu, Y., Guo, J., Zhou, H., Li, C. & Guo, X. Correlating π-π stacking of aromatic diammoniums with stability and dimensional reduction of Dion-Jacobson 2D perovskites. J. Am. Chem. Soc. 146, 8198–8205 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J. W. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9, 3021 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, T. et al. Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31, 1901242 (2019).

    Article 

    Google Scholar
     

  • Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hoffman, J. M. et al. Film formation mechanisms in mixed-dimensional 2D/3D halide perovskite films revealed by in situ grazing-incidence wide-angle X-ray scattering. Chem 8, 1067–1082 (2022).

    Article 

    Google Scholar
     

  • Quintero-Bermudez, R. et al. Ligand-induced surface charge density modulation generates local type-II band alignment in reduced-dimensional perovskites. J. Am. Chem. Soc. 141, 13459–13467 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yu, D. et al. Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin. Nat. Commun. 13, 6229 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Julien, A., Puel, J.-B. & Guillemoles, J.-F. Distinction of mechanisms causing experimental degradation of perovskite solar cells by simulating associated pathways. Energy Environ. Sci. 16, 190–200 (2023).

    Article 

    Google Scholar
     

  • Zhao, B. X. et al. A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy Environ. Sci. 13, 4334–4343 (2020).

    Article 

    Google Scholar
     

  • Lai, H. et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15. J. Am. Chem. Soc. 140, 11639–11646 (2018).

    Article 
    ADS 

    Google Scholar