• Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Gao, D. et al. High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts. Nat. Photon. 19, 1070–1077 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Strain regulation retards natural operation decay of perovskite solar cells. Nature 635, 882–889 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, Y. et al. Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 4, 1087–1103 (2020).

    Article 

    Google Scholar
     

  • Li, N. et al. Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020).

    Article 

    Google Scholar
     

  • Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Meng, H. et al. Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9, 536–547 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ma, C. et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, J. et al. Modulation of perovskite degradation with multiple-barrier for light-heat stable perovskite solar cells. Nat. Commun. 14, 6120 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hartono, N. T. P. et al. Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset. Nat. Commun. 14, 4869 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, W. et al. Molecular bridging of buried interface flattens grain boundary grooves and imparts stress relaxation for performance enhancement and UV stability in perovskite solar cells. Adv. Energy Mater. 15, 2501296 (2025).

    Article 

    Google Scholar
     

  • Wang, L. et al. A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb–I perovskite solar cells. Science 363, 265–270 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, X. et al. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1, 1014–1020 (2016).

    Article 

    Google Scholar
     

  • Xiong, Q. et al. Managed spatial strain uniformity for efficient perovskite photovoltaics enables minimized energy deficit. Joule 8, 817–834 (2024).

    Article 

    Google Scholar
     

  • Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Xue, D.-J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article 

    Google Scholar
     

  • Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 12, 596–606 (2019).

    Article 

    Google Scholar
     

  • Nie, R. et al. Enhanced coordination interaction with multi-site binding ligands for efficient and stable perovskite solar cells. Nat. Commun. 16, 6438 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yang, T. et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14, 839 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pei, F. et al. Inhibiting defect passivation failure in perovskite for perovskite/Cu (In,Ga)Se2 monolithic tandem solar cells with certified efficiency 27.35%. Nat. Energy 10, 824–835 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Wang, S. et al. Fluorinated isopropanol for improved defect passivation and reproducibility in perovskite solar cells. Nat. Energy 10, 1074–1083 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Xu, H. et al. Metastable interphase induced pre-strain compensation enables efficient and stable perovskite solar cells. Energy Environ. Sci. 18, 246–255 (2025).

    Article 

    Google Scholar
     

  • Iwai, Y. et al. Giant anisotropic thermal expansion of copper-cyanido flat layers with flexible copper nodes. Chem. Commun. 60, 6512–6515 (2024).

    Article 

    Google Scholar
     

  • Rolston, N. et al. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8, 1802139 (2018).

    Article 

    Google Scholar
     

  • Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Article 

    Google Scholar
     

  • Meng, W. et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule 6, 458–475 (2022).

    Article 

    Google Scholar
     

  • Sun, X. et al. In-plane compressive strain stabilized formamidinium-based perovskite. Matter 8, 101920 (2025).

    Article 

    Google Scholar
     

  • Ju, S.-Y. et al. Enhanced phase stability of compressive strain-induced perovskite crystals. ACS Appl. Mater. Interfaces 14, 39996–40004 (2022).

    Article 

    Google Scholar
     

  • Wang, S. et al. Enhanced passivation durability in perovskite solar cells via concentration-independent passivators. Joule 8, 1105–1119 (2024).

    Article 

    Google Scholar
     

  • Yuan, Y. et al. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    Article 

    Google Scholar
     

  • Brennan, M. C. et al. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).

    Article 

    Google Scholar
     

  • Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 172–183 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Khenkin, M. et al. Light cycling as a key to understanding the outdoor behaviour of perovskite solar cells. Energy Environ. Sci. 17, 602–610 (2024).

    Article 

    Google Scholar
     

  • Li, G. et al. Highly efficient p–i–n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rolston, N. et al. Comment on ‘Light-induced lattice expansion leads to high-efficiency perovskite solar cells’. Science 368, eaay8691 (2020).

    Article 

    Google Scholar
     

  • Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018).

    Article 
    ADS 

    Google Scholar