• Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kohno, M., Starykh, O. A. & Balents, L. Spinons and triplons in spatially anisotropic frustrated antiferromagnets. Nat. Phys. 3, 790 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Norman, M. R. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Ma, J. et al. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9. Phys. Rev. Lett. 116, 087201 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Dai, P.-L. et al. Spinon Fermi surface spin liquid in a triangular lattice antiferromagnet NaYbSe2. Phys. Rev. X 11, 021044 (2021).

    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. Quantum disordered ground state in the triangular-lattice magnet NaRuO2. Nat. Phys. 19, 943 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Weihong, Z., McKenzie, R. H. & Singh, R. R. P. Phase diagram for a class of spin-\(\frac{1}{2}\) Heisenberg models interpolating between the square-lattice, the triangular-lattice, and the linear-chain limits. Phys. Rev. B 59, 14367 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Chung, C.-H., Voelker, K. & Kim, Y. B. Statistics of spinons in the spin-liquid phase of Cs2CuCl4. Phys. Rev. B 68, 094412 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Yunoki, S. & Sorella, S. Resonating valence bond wave function for the two-dimensional fractional spin liquid. Phys. Rev. Lett. 92, 157003 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zheng, W., Singh, R. R. P., McKenzie, R. H. & Coldea, R. Temperature dependence of the magnetic susceptibility for triangular-lattice antiferromagnets with spatially anisotropic exchange constants. Phys. Rev. B 71, 134422 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, W., Fjærestad, J. O., Singh, R. R. P., McKenzie, R. H. & Coldea, R. Anomalous excitation spectra of frustrated quantum antiferromagnets. Phys. Rev. Lett. 96, 057201 (2006).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Yunoki, S. & Sorella, S. Two spin liquid phases in the spatially anisotropic triangular Heisenberg model. Phys. Rev. B 74, 014408 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Weng, M. Q., Sheng, D. N., Weng, Z. Y. & Bursill, R. J. Spin-liquid phase in an anisotropic triangular-lattice Heisenberg model: exact diagonalization and density-matrix renormalization group calculations. Phys. Rev. B 74, 012407 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Starykh, O. A. & Balents, L. Ordering in spatially anisotropic triangular antiferromagnets. Phys. Rev. Lett. 98, 077205 (2007).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Hayashi, Y. & Ogata, M. Possibility of gapless spin liquid state by one-dimensionalization. J. Phys. Soc. Jpn. 76, 053705 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Heidarian, D., Sorella, S. & Becca, F. Spin-\(\frac{1}{2}\) Heisenberg model on the anisotropic triangular lattice: from magnetism to a one-dimensional spin liquid. Phys. Rev. B 80, 012404 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Starykh, O. A., Katsura, H. & Balents, L. Extreme sensitivity of a frustrated quantum magnet: Cs2CuCl4. Phys. Rev. B 82, 014421 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Reuther, J. & Thomale, R. Functional renormalization group for the anisotropic triangular antiferromagnet. Phys. Rev. B 83, 024402 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Harada, K. Numerical study of incommensurability of the spiral state on spin-\(\frac{1}{2}\) spatially anisotropic triangular antiferromagnets using entanglement renormalization. Phys. Rev. B 86, 184421 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Starykh, O. A., Jin, W. & Chubukov, A. V. Phases of a triangular-lattice antiferromagnet near saturation. Phys. Rev. Lett. 113, 087204 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ghorbani, E., Tocchio, L. F. & Becca, F. Variational wave functions for the \(S=\frac{1}{2}\) Heisenberg model on the anisotropic triangular lattice: spin liquids and spiral orders. Phys. Rev. B 93, 085111 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Morita, K. Isothermal and adiabatic magnetization processes of the spin-\(\frac{1}{2}\) Heisenberg model on an anisotropic triangular lattice. Phys. Rev. B 105, 064428 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Yu, Y., Li, S., Isk, S. & Gul, E. Magnetic phases of the anisotropic triangular lattice Hubbard model. Phys. Rev. B 107, 075106 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bernu, B., Lecheminant, P., Lhuillier, C. & Pierre, L. Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice. Phys. Rev. B 50, 10048 (1994).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • White, S. R. & Chernyshev, A. L. Neél order in square and triangular lattice Heisenberg models. Phys. Rev. Lett. 99, 127004 (2007).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Endoh, Y., Shirane, G., Birgeneau, R. J., Richards, P. M. & Holt, S. L. Dynamics of an \(S=\frac{1}{2}\), one-dimensional Heisenberg antiferromagnet. Phys. Rev. Lett. 32, 170 (1974).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tennant, D. A., Perring, T. G., Cowley, R. A. & Nagler, S. E. Unbound spinons in the S = 1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70, 4003 (1993).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Coldea, R. et al. Neutron scattering study of the magnetic structure of Cs2CuCl4. J. Phys. Condens. Matter 8, 7473 (1996).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Coldea, R., Tennant, D. A., Tsvelik, A. M. & Tylczynski, Z. Experimental realization of a 2D fractional quantum spin liquid. Phys. Rev. Lett. 86, 1335 (2001).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Coldea, R. et al. Direct measurement of the spin hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4. Phys. Rev. Lett. 88, 137203 (2002).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Coldea, R., Tennant, D. A. & Tylczynski, Z. Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs2CuCl4 observed by neutron scattering. Phys. Rev. B 68, 134424 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Radu, T. et al. Bose-Einstein condensation of magnons in Cs2CuCl4. Phys. Rev. Lett. 95, 127202 (2005).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tokiwa, Y. et al. Magnetic phase transitions in the two-dimensional frustrated quantum antiferromagnet Cs2CuCl4. Phys. Rev. B 73, 134414 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Povarov, K. Y., Smirnov, A. I., Starykh, O. A., Petrov, S. V. & Shapiro, A. Y. Modes of magnetic resonance in the spin-liquid phase of Cs2CuCl4. Phys. Rev. Lett. 107, 037204 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Smirnov, A. I., Povarov, K. Y., Petrov, S. V. & Shapiro, A. Y. Magnetic resonance in the ordered phases of the two-dimensional frustrated quantum magnet Cs2CuCl4. Phys. Rev. B 85, 184423 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zvyagin, S. A. et al. Direct determination of exchange parameters in Cs2CuBr4 and Cs2CuCl4: high-field electron-spin-resonance studies. Phys. Rev. Lett. 112, 077206 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zvyagin, S. A. et al. Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4. Nat. Commun. 10, 1064 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Schulze, E. et al. Evidence of one-dimensional magnetic heat transport in the triangular-lattice antiferromagnet Cs2CuCl4. Phys. Rev. Res. 1, 032022(R) (2019).

    Article 

    Google Scholar
     

  • Ono, T. et al. Magnetization plateau in the frustrated quantum spin system Cs2CuBr4. Phys. Rev. B 67, 104431 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Ono, T. et al. Magnetization plateaux of the S = 1/2 two-dimensional frustrated antiferromagnet Cs2CuBr4. J. Phys. Condens. Matter 16, S773 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Tsujii, H. et al. Thermodynamics of the up-up-down phase of the \(S=\frac{1}{2}\) triangular-lattice antiferromagnet Cs2CuBr4. Phys. Rev. B 76, 060406(R) (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fortune, N. A. et al. Cascade of magnetic-field-induced quantum phase transitions in a Spin-1/2 triangular-lattice antiferromagnet. Phys. Rev. Lett. 102, 257201 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kandpal, H. C., Opahle, I., Zhang, Y.-Z., Jeschke, H. O. & Valentí, R. Revision of model parameters for κ-type charge transfer salts: an ab initio study. Phys. Rev. Lett. 103, 067004 (2009).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Koretsune, T. & Hotta, C. Evaluating model parameters of the κ- and β’-type Mott insulating organic solids. Phys. Rev. B 89, 045102 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yoshida, Y. et al. Spin-disordered quantum phases in a quasi-one-dimensional triangular lattice. Nat. Phys. 11, 679 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Komatsu, T., Matsukawa, N., Inoue, T. & Saito, G. Realization of superconductivity at ambient pressure by band-filling control in κ-(BEDT-TTF)2Cu2(CN)3. J. Phys. Soc. Jpn. 65, 1340 (1996).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kato, R., Kashimura, Y., Aonuma, S., Hanasaki, N. & Tajima, H. A new molecular superconductor \({\beta }^{{\prime} }\)-Et2Me2P[Pd(dmit)2]2 (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate). Solid State Commun. 105, 561 (1998).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Shimizu, Y. et al. Magnetic field driven transition between valence bond solid and antiferromagnetic order in a distorted triangular lattice. Phys. Rev. Res. 3, 023145 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Powell, B. J., Kenny, E. P. & Merino, J. Dynamical reduction of the dimensionality of exchange interactions and the “spin-liquid” phase of κ–(BEDT–TTF)2X. Phys. Rev. Lett. 119, 087204 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hirai, D. et al. “Visible” 5d orbital states in a pleochroic oxychloride. J. Am. Chem. Soc. 139, 10784 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hirai, D., Nawa, K., Kawamura, M., Misawa, T. & Hiroi, Z. One-dimensionalization by geometrical frustration in the anisotropic triangular lattice of the 5d quantum antiferromagnet Ca3ReO5Cl2. J. Phys. Soc. Jpn. 88, 044708 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hirai, D., Yajima, T., Nawa, K., Kawamura, M. & Hiroi, Z. Anisotropic triangular lattice realized in rhenium oxychlorides A3ReO5Cl2 (A = Ba. Sr). Inorg. Chem. 59, 10025 (2020).

  • Nawa, K. et al. Bound spinon excitations in the spin-\(\frac{1}{2}\) anisotropic triangular antiferromagnet Ca3ReO5Cl2. Phys. Rev. Res. 2, 043121 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zvyagin, S. A. et al. Dimensional reduction and incommensurate dynamic correlations in the \(S=\frac{1}{2}\) triangular-lattice antiferromagnet Ca3ReO5Cl2. Nat. Commun. 13, 6310 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Choi, Y. et al. Bosonic spinons in anisotropic triangular antiferromagnets. Nat. Commun. 12, 6453 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bonner, J. C. & Fisher, M. E. Linear magnetic chains with anisotropic coupling. Phys. Rev. 135, A640 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Gen, M., Okamoto, Y., Mori, M., Takenaka, K. & Kohama, Y. Magnetization process of the breathing pyrochlore magnet CuInCr4S8 in ultrahigh magnetic fields up to 150 T. Phys. Rev. B 101, 054434 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Morita, K. & Tohyama, T. Finite-temperature properties of the Kitaev-Heisenberg models on kagome and triangular lattices studied by improved finite-temperature Lanczos methods. Phys. Rev. Res. 2, 013205 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jaklič, J. & Prelovšek, P. Lanczos method for the calculation of finite-temperature quantities in correlated systems. Phys. Rev. B 49, 5065(R) (1994).

    Article 
    ADS 

    Google Scholar
     

  • Uemura, Y. J. et al. Spin fluctuations in frustrated Kagomé lattice system SrCr8Ga4O19 studied by muon spin relaxation. Phys. Rev. Lett. 73, 3306 (1994).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Povarov, K. Y. et al. Electron spin resonance of the interacting spinon liquid. Phys. Rev. Lett. 128, 187202 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Nakajima, K. et al. AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Jpn. 80, SB028 (2011).

    Article 

    Google Scholar
     

  • Nakamura, M. et al. First demonstration of novel method for inelastic neutron scattering measurement utilizing multiple incident energies. J. Phys. Soc. Jpn. 78, 093002 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Inamura, Y., Nakatani, T., Suzuki, J. & Otomo, T. Development status of software ‘Utsusemi’ for Chopper Spectrometers at MLF. J.-PARC J. Phys. Soc. Jpn. 82, SA031 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kadowaki, H. https://github.com/kadowaki-h/absorptionfactoramateras.

  • Bougourzi, A. H., Couture, M. & Kacir, M. Exact two-spinon dynamical correlation function of the one-dimensional Heisenberg model. Phys. Rev. B 54, R12669(R) (1996).

    Article 
    ADS 

    Google Scholar
     

  • Karbach, M., Müller, G., Bougourzi, A. H., Fledderjohann, A. & Mütter, K.-H. Two-spinon dynamic structure factor of the one-dimensional \(s=\frac{1}{2}\) Heisenberg antiferromagnet. Phys. Rev. B 55, 12510 (1997).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kajimoto, R., Sato, K., Inamura, Y. & Fujita, M. in Proceedings of the Joint Conference on Quasielastic Neutron Scattering and the Workshopon Inelastic Neutron Spectrometers QENS/WINS 2016: Probing Nanoscale Dynamics in Energy Related Materials (eds, Fernandez-Alonso, F., Price, D. L., Grzimek, V., Lohstroh, W., Schneidewind, A., & Russina, M.) 050004 (AIP, New York, 2018).

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comp. Phys. Commun. 196, 36 (2015).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kawamura, M., Gohda, Y. & Tsuneyuki, S. Improved tetrahedron method for the Brillouin-zone integration applicable to response functions. Phys. Rev. B 89, 094515 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Miyake, T., Aryasetiawan, F. & Imada, M. Ab initio procedure for constructing effective models of correlated materials with entangled band structure. Phys. Rev. B 80, 155134 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, K. et al. RESPACK: An ab initio tool for derivation of effective low-energy model of material. Comp. Phys. Commun. 261, 107781 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Suzumura, T. et al. mdx: A cloud platform for supporting data science and cross-disciplinary research collaborations. In Proceedings of the IEEE International Conference on Cloud and Big Data Computing, pp. 1–7 (IEEE, 2022).

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    Article 
    CAS 
    ADS 

    Google Scholar