• Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Weisbuch, C. et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, T. et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smith, D. R. & Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).

    Article 

    Google Scholar
     

  • Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals materials. Nat. Commun. 15, 69 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, Y. U. et al. Low-loss organic hyperbolic materials in the visible spectral range: a joint experimental and first-principles study. Adv. Mater. 32, 2002387 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sternbach, A. J. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

    Article 

    Google Scholar
     

  • Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rho, J. et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cai, W. et al. Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Valentine, J. et al. An optical cloak made of dielectrics. Nat. Mater. 8, 568–571 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ergin, T. et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Poddubny, A. et al. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Epstein, I. et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater. 7, 035031 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eini, T. et al. Valley-polarized hyperbolic exciton polaritons in few-layer two-dimensional semiconductors at visible frequencies. Phys. Rev. B 106, L201405 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Article 

    Google Scholar
     

  • Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qian, T.-X. et al. Anisotropic electron-hole excitation and large linear dichroism in the two-dimensional ferromagnet CrSBr with in-plane magnetization. Phys. Rev. Res. 5, 033143 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • López-Paz, S. A. et al. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 13, 4745 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques-Moros, F. et al. Interplay between optical emission and magnetism in the van der Waals magnetic semiconductor CrSBr in the two-dimensional limit. ACS Nano 17, 13224–13231 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, K. et al. Probing the band splitting near the Γ point in the van der Waals magnetic semiconductor CrSBr. J. Phys. Chem. Lett. 15, 6010–6016 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, J. Excitonic negative refraction mediated by magnetic orders—source data. Zenodo https://doi.org/10.5281/zenodo.17715871 (2025).