Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Freedman, M. H., Larsen, M. & Wang, Z. A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
Kim, B. J. et al. Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).
Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264 (2019).
Liu, H., Chaloupka, J. & Khaliullin, G. Kitaev spin liquid in 3d transition metal compounds. Phys. Rev. Lett. 125, 047201 (2020).
Liu, H. & Khaliullin, G. Pseudospin exchange interactions in d7 cobalt compounds: possible realization of the Kitaev model. Phys. Rev. B 97, 014407 (2018).
Sano, R., Kato, Y. & Motome, Y. Kitaev-Heisenberg Hamiltonian for high-spin d7 Mott insulators. Phys. Rev. B 97, 014408 (2018).
Songvilay, M. et al. Kitaev interactions in the Co honeycomb antiferromagnets Na3Co2SbO6 and Na2Co2TeO6. Phys. Rev. B 102, 224429 (2020).
Yao, W., Iida, K., Kamazawa, K. & Li, Y. Excitations in the ordered and paramagnetic states of honeycomb magnet Na2Co2TeO6. Phys. Rev. Lett. 129, 147202 (2022).
Kim, C. et al. Antiferromagnetic Kitaev interaction in Jeff = 1/2 cobalt honeycomb materials Na3Co2SbO6 and Na2Co2TeO6. J. Phys.: Condens. Matter 34, 045802 (2022).
van Veenendaal, M. et al. Electronic structure of Co 3d states in the Kitaev material candidate honeycomb cobaltate Na3Co2SbO6 probed with x-ray dichroism. Phys. Rev. B 107, 214443 (2023).
Gu, Y. et al. In-plane multi-q magnetic ground state of Na3Co2SbO6. Phys. Rev. B 109, L060410 (2024).
Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl Acad. Sci. USA 120, e2215509119 (2023).
Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733 (2016).
Wolter, A. U. B. et al. Field-induced quantum criticality in the Kitaev system α-RuCl3. Phys. Rev. B 96, 041405 (2017).
Viciu, L. et al. Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6. J. Solid State Chem. 180, 1060–1067 (2007).
Yan, J.-Q. et al. Magnetic order in single crystals of Na3Co2SbO6 with a honeycomb arrangement of 3d7 Co2+ ions. Phys. Rev. Mat. 3, 074405 (2019).
Vavilova, E. et al. Magnetic phase diagram and possible Kitaev-like behavior of the honeycomb-lattice antimonate Na3Co2SbO6. Phys. Rev. B 107, 054411 (2023).
Hu, Z. et al. Field-induced phase transitions and quantum criticality in the honeycomb antiferromagnet Na3Co2SbO6. Phys. Rev. B 109, 054411 (2024).
Li, X. et al. Giant magnetic in-plane anisotropy and competing instabilities in Na3Co2SbO6. Phys. Rev. X 12, 041024 (2022).
Zhang, X. et al. A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2. Nat. Mater. 22, 58–63 (2023).
Takayama, T. et al. Competing spin-orbital singlet states in the 4d4 honeycomb ruthenate Ag3LiRu2O6. Phys. Rev. Res. 4, 043079 (2022).
Hermann, V. et al. Pressure-induced formation of rhodium zigzag chains in the honeycomb rhodate Li2RhO3. Phys. Rev. B 100, 064105 (2019).
Xu, Y. et al. Pressure-induced structural evolution with a turnover point in the honeycomb iridate Na2IrO3. J. Phys. Chem. C 127, 20177–20182 (2023).
Shen, B. et al. Interplay of magnetism and dimerization in the pressurized Kitaev material β-Li2IrO3. Phys. Rev. B 104, 134426 (2021).
Veiga, L. S. I. et al. Pressure-induced structural dimerization in the hyperhoneycomb iridate β-Li2IrO3 at low temperatures. Phys. Rev. B 100, 064104 (2019).
Fabbris, G. et al. Complex pressure-temperature structural phase diagram of the honeycomb iridate Cu2IrO3. Phys. Rev. B 104, 014102 (2021).
van Veenendaal, M. & Haskel, D. Interpretation of Ir L-edge isotropic x-ray absorption spectra across the pressure-induced dimerization transition in hyperhoneycomb β-Li2IrO3. Phys. Rev. B 105, 214420 (2022).
Jiang, S., White, S. R. & Chernyshev, A. L. Quantum phases in the honeycomb-lattice J1-J3 ferro-antiferromagnetic model. Phys. Rev. B 108, L180406 (2023).
Fouet, J. B., Sindzingre, P. & Lhuillier, C. An investigation of the quantum J1-J2-J3 model on the honeycomb lattice. Eur. Phys. J. B 20, 241–254 (2001).
Birch, F. Elasticity and constitution of the earth’s interior. J. Geophys. Res. 57, 227 (1952).
Vinet, P., Ferrante, J., Smith, J. R. & Rose, J. H. A universal equation of state for solids. J. Phys. C Solid State Phys. 19, L467 (1986).
Vinet, P., Smith, J. R., Ferrante, J. & Rose, J. H. Temperature effects on the universal equation of state of solids. Phys. Rev. B 35, 1945–1953 (1987).
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst. A32, 751–767 (1976).
Liu, Z. et al. Sequential spin state transition and intermetallic charge transfer in PbCoO3. J. Am. Chem. Soc. 142, 5731–5741 (2020).
Guo, Q., Mao, H.-K., Hu, J., Shu, J. & Hemley, R. J. The phase transitions of CoO under static pressure to 104 GPa. J. Phys. Condens. Matter 14, 11369–11374 (2002).
Rueff, J.-P., Mattila, A., Badro, J., Vankó, G. & Shukla, A. Electronic properties of transition-metal oxides under high pressure revealed by x-ray emission spectroscopy. J. Phys. Condens. Matter 17, S717–S726 (2005).
Robinson, K., Gibbs, G. V. & Ribbe, P. H. Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172, 567–570 (1971).
Tsutsumi, K. The x-ray non-diagram lines K\(\beta {\prime}\) of some compounds of the iron group. J. Phys. Soc. Japan 14, 12 (1959).
Tsutsumi, K. & Nakamori, H. X-ray K emission spectra of chromium in various chromium compounds. J. Phys. Soc. Japan 25, 5 (1968).
Sikora, M. et al. Strong K-edge magnetic circular dichroism observed in photon-in-photon-out spectroscopy. Phys. Rev. Lett. 105, 037202 (2010).
Li, N. et al. Structural and electronic phase transitions of Co2Te3O8 spiroffite under high pressure. Phys. Rev. B 99, 245125 (2019).
Yoo, C. S. et al. First-order isostructural mott transition in highly compressed MnO. Phys. Rev. Lett. 94, 115502 (2005).
Mao, Z. et al. Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron mössbauer and x-ray emission spectroscopy. Am. Min. 99, 415–423 (2014).
Kunes, J., Lukoyanov, A. V., Anisimov, V. I., Scalettar, R. T. & Pickett, W. E. Collapse of magnetic moment drives the mott transition in MnO. Nat. Mater. 7, 198–202 (2008).
Ji, C. et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 573, 558 (2019).
Haberl, B., Guthrie, M. & Boehler, R. Advancing neutron diffraction for accurate structural measurement of light elements at megabar pressures. Sci. Rep. 13, 4741 (2023).
Baldini, M., Struzhkin, V. V., Goncharov, A. F., Postorino, P. & Mao, W. L. Persistence of Jahn-Teller distortion up to the insulator to metal transition in LaMnO3. Phys. Rev. Lett. 106, 066402 (2011).
Kim, G.-H. et al. Suppression of antiferromagnetic order by strain-enhanced frustration in honeycomb cobaltate. Sci. Adv. 10, eadn8694 (2024).
Takayama, T. et al. Pressure-induced collapse of the spin-orbital mott state in the hyperhoneycomb iridate β-Li2IrO3. Phys. Rev. B 99, 125127 (2019).
Clancy, J. P. et al. Pressure-driven collapse of the relativistic electronic ground state in a honeycomb iridate. npj Quant. Mater. 3, 35 (2018).
Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).
Goodenough, J. B. Magnetism and the Chemical Bond. (Interscience-Wiley, New York, 1963).
Zaliznyak, I. A., Dender, D. C., Broholm, C. & Reich, D. H. Tuning the spin hamiltonian of Ni(C2H8N2)2NO2ClO4 by external pressure: a neutron-scattering study. Phys. Rev. B 57, 5200 (1998).
Pajerowski, D. M., Podlesnyak, A. P., Herbrych, J. & Manson, J. High-pressure inelastic neutron scattering study of the anisotropic S=1 spin chain [Ni(HF2)(3-Clpyradine)4]BF4. Phys. Rev. B 105, 134420 (2022).
Li, X. et al. Magnetic order, disorder, and excitations under pressure in the Mott insulator Sr2IrO4. Phys. Rev. B 104, L201111 (2021).
Haase, J., Goh, S. K., Meissner, T., Alireza, P. L. & Rybicki, D. High sensitivity nuclear magnetic resonance probe for anvil cell pressure experiments. Rev. Sci. Instrum. 80, 073905 (2009).
Shen, G. et al. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source. High Press. Res. 28, 145–162 (2008).
Dunstan, D. J. Theory of the gasket in diamond anvil high pressure cells. Rev. Sci. Instrum. 60, 3789–3795 (1989).
Rivers, M. et al. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press. Res. 28, 273–292 (2008).
Barnett, J. D., Block, S. & Piermarini, G. J. An optical fluorescence system for quantitative pressure measurement in the diamond anvil cell. Rev. Sci. Intrum. 44, 1–9 (1973).
Chijioke, A. D., Nellis, W. J., Soldatov, A. & Silvera, I. F. The ruby pressure standard to 150 Gpa. J. Appl. Phys. 98, 114905 (2005).
Hanfland, M. & Syassen, K. A Raman study of diamond anvils under stress. J. Appl. Phys. 57, 2752–2756 (1985).
Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 Gpa. J. Phys. Conf. Ser. 215, 012195 (2010).
Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional x-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).
Petr^íček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).
Gonzalez-Platas, J., Alvaro, M., Nestolac, F. & Angel, R. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 49, 1377–1382 (2016).
Haskel, D., Tseng, Y. C., Lang, J. C. & Sinogeikin, S. Instrument for x-ray magnetic circular dichroism measurements at high pressures. Rev. Sci. Instrum. 78, 083904 (2007).
Lin, J.-F., Shu, J., Mao, H.-K., Hemley, R. J. & Shen, G. Amorphous boron gasket in diamond anvil cell research. Rev. Sci. Instrum. 74, 4732–4736 (2003).
Lin, J.-F. et al. Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nat. Geosci. 1, 688–691 (2008).
Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
van Veenendaal, M. The Theory of Inelastic Scattering and Absorption of X-rays. (Cambridge University Press, Cambridge, 2015).
Wang, X., de Groot, F. M. F. & Cramer, S. P. Spin-polarized x-ray emission of 3d transition-metal ions: A comparison via Kα and Kβ detection. Phys. Rev. B 56, 4553–4564 (1997).
Harrison, W. A. Elementary Electronic Structure. (World Scientific, Singapore, 1999).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).