• Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    MathSciNet 

    Google Scholar
     

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    MathSciNet 

    Google Scholar
     

  • Freedman, M. H., Larsen, M. & Wang, Z. A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002).

    MathSciNet 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    MathSciNet 

    Google Scholar
     

  • Kim, B. J. et al. Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).


    Google Scholar
     

  • Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).


    Google Scholar
     

  • Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264 (2019).


    Google Scholar
     

  • Liu, H., Chaloupka, J. & Khaliullin, G. Kitaev spin liquid in 3d transition metal compounds. Phys. Rev. Lett. 125, 047201 (2020).


    Google Scholar
     

  • Liu, H. & Khaliullin, G. Pseudospin exchange interactions in d7 cobalt compounds: possible realization of the Kitaev model. Phys. Rev. B 97, 014407 (2018).


    Google Scholar
     

  • Sano, R., Kato, Y. & Motome, Y. Kitaev-Heisenberg Hamiltonian for high-spin d7 Mott insulators. Phys. Rev. B 97, 014408 (2018).


    Google Scholar
     

  • Songvilay, M. et al. Kitaev interactions in the Co honeycomb antiferromagnets Na3Co2SbO6 and Na2Co2TeO6. Phys. Rev. B 102, 224429 (2020).


    Google Scholar
     

  • Yao, W., Iida, K., Kamazawa, K. & Li, Y. Excitations in the ordered and paramagnetic states of honeycomb magnet Na2Co2TeO6. Phys. Rev. Lett. 129, 147202 (2022).


    Google Scholar
     

  • Kim, C. et al. Antiferromagnetic Kitaev interaction in Jeff = 1/2 cobalt honeycomb materials Na3Co2SbO6 and Na2Co2TeO6. J. Phys.: Condens. Matter 34, 045802 (2022).


    Google Scholar
     

  • van Veenendaal, M. et al. Electronic structure of Co 3d states in the Kitaev material candidate honeycomb cobaltate Na3Co2SbO6 probed with x-ray dichroism. Phys. Rev. B 107, 214443 (2023).


    Google Scholar
     

  • Gu, Y. et al. In-plane multi-q magnetic ground state of Na3Co2SbO6. Phys. Rev. B 109, L060410 (2024).


    Google Scholar
     

  • Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl Acad. Sci. USA 120, e2215509119 (2023).


    Google Scholar
     

  • Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733 (2016).


    Google Scholar
     

  • Wolter, A. U. B. et al. Field-induced quantum criticality in the Kitaev system α-RuCl3. Phys. Rev. B 96, 041405 (2017).


    Google Scholar
     

  • Viciu, L. et al. Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6. J. Solid State Chem. 180, 1060–1067 (2007).


    Google Scholar
     

  • Yan, J.-Q. et al. Magnetic order in single crystals of Na3Co2SbO6 with a honeycomb arrangement of 3d7 Co2+ ions. Phys. Rev. Mat. 3, 074405 (2019).


    Google Scholar
     

  • Vavilova, E. et al. Magnetic phase diagram and possible Kitaev-like behavior of the honeycomb-lattice antimonate Na3Co2SbO6. Phys. Rev. B 107, 054411 (2023).


    Google Scholar
     

  • Hu, Z. et al. Field-induced phase transitions and quantum criticality in the honeycomb antiferromagnet Na3Co2SbO6. Phys. Rev. B 109, 054411 (2024).


    Google Scholar
     

  • Li, X. et al. Giant magnetic in-plane anisotropy and competing instabilities in Na3Co2SbO6. Phys. Rev. X 12, 041024 (2022).


    Google Scholar
     

  • Zhang, X. et al. A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2. Nat. Mater. 22, 58–63 (2023).


    Google Scholar
     

  • Takayama, T. et al. Competing spin-orbital singlet states in the 4d4 honeycomb ruthenate Ag3LiRu2O6. Phys. Rev. Res. 4, 043079 (2022).


    Google Scholar
     

  • Hermann, V. et al. Pressure-induced formation of rhodium zigzag chains in the honeycomb rhodate Li2RhO3. Phys. Rev. B 100, 064105 (2019).


    Google Scholar
     

  • Xu, Y. et al. Pressure-induced structural evolution with a turnover point in the honeycomb iridate Na2IrO3. J. Phys. Chem. C 127, 20177–20182 (2023).


    Google Scholar
     

  • Shen, B. et al. Interplay of magnetism and dimerization in the pressurized Kitaev material β-Li2IrO3. Phys. Rev. B 104, 134426 (2021).


    Google Scholar
     

  • Veiga, L. S. I. et al. Pressure-induced structural dimerization in the hyperhoneycomb iridate β-Li2IrO3 at low temperatures. Phys. Rev. B 100, 064104 (2019).


    Google Scholar
     

  • Fabbris, G. et al. Complex pressure-temperature structural phase diagram of the honeycomb iridate Cu2IrO3. Phys. Rev. B 104, 014102 (2021).


    Google Scholar
     

  • van Veenendaal, M. & Haskel, D. Interpretation of Ir L-edge isotropic x-ray absorption spectra across the pressure-induced dimerization transition in hyperhoneycomb β-Li2IrO3. Phys. Rev. B 105, 214420 (2022).


    Google Scholar
     

  • Jiang, S., White, S. R. & Chernyshev, A. L. Quantum phases in the honeycomb-lattice J1-J3 ferro-antiferromagnetic model. Phys. Rev. B 108, L180406 (2023).


    Google Scholar
     

  • Fouet, J. B., Sindzingre, P. & Lhuillier, C. An investigation of the quantum J1-J2-J3 model on the honeycomb lattice. Eur. Phys. J. B 20, 241–254 (2001).


    Google Scholar
     

  • Birch, F. Elasticity and constitution of the earth’s interior. J. Geophys. Res. 57, 227 (1952).


    Google Scholar
     

  • Vinet, P., Ferrante, J., Smith, J. R. & Rose, J. H. A universal equation of state for solids. J. Phys. C Solid State Phys. 19, L467 (1986).


    Google Scholar
     

  • Vinet, P., Smith, J. R., Ferrante, J. & Rose, J. H. Temperature effects on the universal equation of state of solids. Phys. Rev. B 35, 1945–1953 (1987).


    Google Scholar
     

  • Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst. A32, 751–767 (1976).


    Google Scholar
     

  • Liu, Z. et al. Sequential spin state transition and intermetallic charge transfer in PbCoO3. J. Am. Chem. Soc. 142, 5731–5741 (2020).


    Google Scholar
     

  • Guo, Q., Mao, H.-K., Hu, J., Shu, J. & Hemley, R. J. The phase transitions of CoO under static pressure to 104 GPa. J. Phys. Condens. Matter 14, 11369–11374 (2002).


    Google Scholar
     

  • Rueff, J.-P., Mattila, A., Badro, J., Vankó, G. & Shukla, A. Electronic properties of transition-metal oxides under high pressure revealed by x-ray emission spectroscopy. J. Phys. Condens. Matter 17, S717–S726 (2005).


    Google Scholar
     

  • Robinson, K., Gibbs, G. V. & Ribbe, P. H. Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172, 567–570 (1971).


    Google Scholar
     

  • Tsutsumi, K. The x-ray non-diagram lines K\(\beta {\prime}\) of some compounds of the iron group. J. Phys. Soc. Japan 14, 12 (1959).


    Google Scholar
     

  • Tsutsumi, K. & Nakamori, H. X-ray K emission spectra of chromium in various chromium compounds. J. Phys. Soc. Japan 25, 5 (1968).


    Google Scholar
     

  • Sikora, M. et al. Strong K-edge magnetic circular dichroism observed in photon-in-photon-out spectroscopy. Phys. Rev. Lett. 105, 037202 (2010).


    Google Scholar
     

  • Li, N. et al. Structural and electronic phase transitions of Co2Te3O8 spiroffite under high pressure. Phys. Rev. B 99, 245125 (2019).


    Google Scholar
     

  • Yoo, C. S. et al. First-order isostructural mott transition in highly compressed MnO. Phys. Rev. Lett. 94, 115502 (2005).


    Google Scholar
     

  • Mao, Z. et al. Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron mössbauer and x-ray emission spectroscopy. Am. Min. 99, 415–423 (2014).


    Google Scholar
     

  • Kunes, J., Lukoyanov, A. V., Anisimov, V. I., Scalettar, R. T. & Pickett, W. E. Collapse of magnetic moment drives the mott transition in MnO. Nat. Mater. 7, 198–202 (2008).


    Google Scholar
     

  • Ji, C. et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 573, 558 (2019).


    Google Scholar
     

  • Haberl, B., Guthrie, M. & Boehler, R. Advancing neutron diffraction for accurate structural measurement of light elements at megabar pressures. Sci. Rep. 13, 4741 (2023).


    Google Scholar
     

  • Baldini, M., Struzhkin, V. V., Goncharov, A. F., Postorino, P. & Mao, W. L. Persistence of Jahn-Teller distortion up to the insulator to metal transition in LaMnO3. Phys. Rev. Lett. 106, 066402 (2011).


    Google Scholar
     

  • Kim, G.-H. et al. Suppression of antiferromagnetic order by strain-enhanced frustration in honeycomb cobaltate. Sci. Adv. 10, eadn8694 (2024).


    Google Scholar
     

  • Takayama, T. et al. Pressure-induced collapse of the spin-orbital mott state in the hyperhoneycomb iridate β-Li2IrO3. Phys. Rev. B 99, 125127 (2019).


    Google Scholar
     

  • Clancy, J. P. et al. Pressure-driven collapse of the relativistic electronic ground state in a honeycomb iridate. npj Quant. Mater. 3, 35 (2018).


    Google Scholar
     

  • Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).


    Google Scholar
     

  • Goodenough, J. B. Magnetism and the Chemical Bond. (Interscience-Wiley, New York, 1963).


    Google Scholar
     

  • Zaliznyak, I. A., Dender, D. C., Broholm, C. & Reich, D. H. Tuning the spin hamiltonian of Ni(C2H8N2)2NO2ClO4 by external pressure: a neutron-scattering study. Phys. Rev. B 57, 5200 (1998).


    Google Scholar
     

  • Pajerowski, D. M., Podlesnyak, A. P., Herbrych, J. & Manson, J. High-pressure inelastic neutron scattering study of the anisotropic S=1 spin chain [Ni(HF2)(3-Clpyradine)4]BF4. Phys. Rev. B 105, 134420 (2022).


    Google Scholar
     

  • Li, X. et al. Magnetic order, disorder, and excitations under pressure in the Mott insulator Sr2IrO4. Phys. Rev. B 104, L201111 (2021).


    Google Scholar
     

  • Haase, J., Goh, S. K., Meissner, T., Alireza, P. L. & Rybicki, D. High sensitivity nuclear magnetic resonance probe for anvil cell pressure experiments. Rev. Sci. Instrum. 80, 073905 (2009).


    Google Scholar
     

  • Shen, G. et al. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source. High Press. Res. 28, 145–162 (2008).


    Google Scholar
     

  • Dunstan, D. J. Theory of the gasket in diamond anvil high pressure cells. Rev. Sci. Instrum. 60, 3789–3795 (1989).


    Google Scholar
     

  • Rivers, M. et al. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press. Res. 28, 273–292 (2008).


    Google Scholar
     

  • Barnett, J. D., Block, S. & Piermarini, G. J. An optical fluorescence system for quantitative pressure measurement in the diamond anvil cell. Rev. Sci. Intrum. 44, 1–9 (1973).


    Google Scholar
     

  • Chijioke, A. D., Nellis, W. J., Soldatov, A. & Silvera, I. F. The ruby pressure standard to 150 Gpa. J. Appl. Phys. 98, 114905 (2005).

  • Hanfland, M. & Syassen, K. A Raman study of diamond anvils under stress. J. Appl. Phys. 57, 2752–2756 (1985).


    Google Scholar
     

  • Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 Gpa. J. Phys. Conf. Ser. 215, 012195 (2010).


    Google Scholar
     

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional x-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).


    Google Scholar
     

  • Petr^íček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).

  • Gonzalez-Platas, J., Alvaro, M., Nestolac, F. & Angel, R. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 49, 1377–1382 (2016).


    Google Scholar
     

  • Haskel, D., Tseng, Y. C., Lang, J. C. & Sinogeikin, S. Instrument for x-ray magnetic circular dichroism measurements at high pressures. Rev. Sci. Instrum. 78, 083904 (2007).


    Google Scholar
     

  • Lin, J.-F., Shu, J., Mao, H.-K., Hemley, R. J. & Shen, G. Amorphous boron gasket in diamond anvil cell research. Rev. Sci. Instrum. 74, 4732–4736 (2003).


    Google Scholar
     

  • Lin, J.-F. et al. Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nat. Geosci. 1, 688–691 (2008).


    Google Scholar
     

  • Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).


    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).


    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).


    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).


    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).


    Google Scholar
     

  • van Veenendaal, M. The Theory of Inelastic Scattering and Absorption of X-rays. (Cambridge University Press, Cambridge, 2015).


    Google Scholar
     

  • Wang, X., de Groot, F. M. F. & Cramer, S. P. Spin-polarized x-ray emission of 3d transition-metal ions: A comparison via Kα and Kβ detection. Phys. Rev. B 56, 4553–4564 (1997).


    Google Scholar
     

  • Harrison, W. A. Elementary Electronic Structure. (World Scientific, Singapore, 1999).


    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).


    Google Scholar