• Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Bricard, A., Caussin, J. B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    ADS 

    Google Scholar
     

  • Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M. & Sagués, F. Active nematics. Nat. Commun. 9, 3246 (2018).

    ADS 

    Google Scholar
     

  • Duclos, G. et al. Topological structure and dynamics of three-dimensional active nematics. Science 367, 1120–1124 (2020).

    ADS 

    Google Scholar
     

  • Alert, R., Casademunt, J. & Joanny, J. F. Active turbulence. Annu. Rev. Condens. Matter Phys. 13, 143–170 (2022).

    ADS 

    Google Scholar
     

  • Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).

    ADS 

    Google Scholar
     

  • Suzuki, R., Weber, C. A., Frey, E. & Bausch, A. R. Polar pattern formation in driven filament systems requires non-binary particle collisions. Nat. Phys. 11, 839–843 (2015).


    Google Scholar
     

  • Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016).

    ADS 

    Google Scholar
     

  • Najma, B., Wei, W. S., Baskaran, A., Foster, P. J. & Duclos, G. Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors. Proc. Natl Acad. Sci. USA 121, e2300174121 (2024).


    Google Scholar
     

  • Maitra, A., Lenz, M. & Voituriez, R. Chiral active hexatics: giant number fluctuations, waves, and destruction of order. Phys. Rev. Lett. 125, 238005 (2020).

    ADS 

    Google Scholar
     

  • Aubret, A., Martinet, Q. & Palacci, J. Metamachines of pluripotent colloids. Nat. Commun. 12, 6398 (2021).

    ADS 

    Google Scholar
     

  • Baconnier, P. et al. Selective and collective actuation in active solids. Nat. Phys. 18, 1234–1239 (2022).


    Google Scholar
     

  • Giomi, L., Toner, J. & Sarkar, N. Long-ranged order and flow alignment in sheared p-atic liquid crystals. Phys. Rev. Lett. 129, 067801 (2022).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Armengol-Collado, J. M., Carenza, L. N., Eckert, J., Krommydas, D. & Giomi, L. Epithelia are multiscale active liquid crystals. Nat. Phys. 19, 1773–1779 (2023).


    Google Scholar
     

  • Mijalkov, M., McDaniel, A., Wehr, J. & Volpe, G. Engineering sensorial delay to control phototaxis and emergent collective behaviors. Phys. Rev. X 6, 011008 (2016).


    Google Scholar
     

  • Lavergne, F. A., Wendehenne, H., Bäuerle, T. & Bechinger, C. Group formation and cohesion of active particles with visual perception–dependent motility. Science 364, 70–74 (2019).

    ADS 

    Google Scholar
     

  • Alston, H., Parry, A. O., Voituriez, R. & Bertrand, T. Intermittent attractive interactions lead to microphase separation in nonmotile active matter. Phys. Rev. E 106, 034603 (2022).

    ADS 
    MathSciNet 

    Google Scholar
     

  • van Kesteren, S., Alvarez, L., Arrese-Igor, S., Alegria, A. & Isa, L. Self-propelling colloids with finite state dynamics. Proc. Natl Acad. Sci. USA 120, e2213481120 (2023).


    Google Scholar
     

  • Ketzetzi, S. et al. Self-reconfiguring colloidal active matter. Preprint at https://arxiv.org/abs/2501.00672 (2024).

  • Parsek, M. R. & Greenberg, E. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).


    Google Scholar
     

  • Guttenplan, S. B. & Kearns, D. B. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37, 849–871 (2013).


    Google Scholar
     

  • Grobas, I., Polin, M. & Asally, M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. eLife 10, e62632 (2021).


    Google Scholar
     

  • Worlitzer, V. M. et al. Biophysical aspects underlying the swarm to biofilm transition. Sci. Adv. 8, eabn8152 (2022).


    Google Scholar
     

  • Farrell, F., Marchetti, M., Marenduzzo, D. & Tailleur, J. Pattern formation in self-propelled particles with density-dependent motility. Phys. Rev. Lett. 108, 248101 (2012).

    ADS 

    Google Scholar
     

  • Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108, 268303 (2012).

    ADS 

    Google Scholar
     

  • Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).

    ADS 

    Google Scholar
     

  • Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).

    ADS 

    Google Scholar
     

  • Bäuerle, T., Fischer, A., Speck, T. & Bechinger, C. Self-organization of active particles by quorum sensing rules. Nat. Commun. 9, 3232 (2018).

    ADS 

    Google Scholar
     

  • Liu, G. et al. Self-driven phase transitions drive Myxococcus xanthus fruiting body formation. Phys. Rev. Lett. 122, 248102 (2019).

    ADS 

    Google Scholar
     

  • Tobazéon, R. Electrohydrodynamic behaviour of single spherical or cylindrical conducting particles in an insulating liquid subjected to a uniform dc field. J. Phys. D 29, 2595 (1996).

    ADS 

    Google Scholar
     

  • Mersch, E. & Vandewalle, N. Antiphase synchronization of electrically shaken conducting beads. Phys. Rev. E 84, 061301 (2011).

    ADS 

    Google Scholar
     

  • Drews, A. M., Cartier, C. A. & Bishop, K. J. Contact charge electrophoresis: experiment and theory. Langmuir 31, 3808–3814 (2015).


    Google Scholar
     

  • Eslami, G., Esmaeilzadeh, E. & Pérez, A. T. Modeling of conductive particle motion in viscous medium affected by an electric field considering particle-electrode interactions and microdischarge phenomenon. Phys. Fluids 28, 107102 (2016).

  • Dou, Y., Pandey, S., Cartier, C. A., Miller, O. & Bishop, K. J. Emergence of traveling waves in linear arrays of electromechanical oscillators. Commun. Phys. 1, 85 (2018).


    Google Scholar
     

  • Han, M. et al. Fluctuating hydrodynamics of chiral active fluids. Nat. Phys. 17, 1260–1269 (2021).


    Google Scholar
     

  • O’Keeffe, K. P., Hong, H. & Strogatz, S. H. Oscillators that sync and swarm. Nat. Commun. 8, 1504 (2017).

    ADS 

    Google Scholar
     

  • Zhang, Y. & Fodor, É. Pulsating active matter. Phys. Rev. Lett. 131, 238302 (2023).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Saint Jean, M., Guthmann, C. & Coupier, G. Relaxation and ordering processes in ‘macroscopic Wigner crystals’. Eur. Phys. J. B 39, 61–68 (2004).

    ADS 

    Google Scholar
     

  • Coupier, G. Élasticité et ancrage dans des cristaux de Wigner macroscopiques: un système modèle pour l’étude du piégeage faible. PhD thesis, Univ. Pierre et Marie Curie, Paris (2006).

  • Galatola, P., Coupier, G., Saint Jean, M., Fournier, J. B. & Guthmann, C. Determination of the interactions in confined macroscopic Wigner islands: theory and experiments. Eur. Phys. J. B 50, 549–557 (2006).

    ADS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).


    Google Scholar
     

  • Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    ADS 

    Google Scholar
     

  • Blair, D. & Dufresne, E. The MATLAB Particle Tracking Code Repository http://physics.georgetown.edu/matlab (2008).

  • Longuet-Higgins, H. C. A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981).

    ADS 

    Google Scholar
     

  • Le Blay, M., Saldi, J. H. K. & Morin, A. Control of collective activity to crystallize an oscillator gas. figshare https://doi.org/10.6084/m9.figshare.28661015 (2025).