• DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).


    Google Scholar
     

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS 

    Google Scholar
     

  • Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    ADS 

    Google Scholar
     

  • Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multiphoton graph states from a single atom. Nature 608, 677–681 (2022).

    ADS 

    Google Scholar
     

  • Tiurev, K. et al. High-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Phys. Rev. A 105, L030601 (2022).

    ADS 

    Google Scholar
     

  • Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS 

    Google Scholar
     

  • Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).

    ADS 

    Google Scholar
     

  • Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009).


    Google Scholar
     

  • Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    ADS 

    Google Scholar
     

  • Buterakos, D., Barnes, E. & Economou, S. E. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys. Rev. X 7, 041023 (2017).


    Google Scholar
     

  • Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020).


    Google Scholar
     

  • Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007).

    ADS 

    Google Scholar
     

  • Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS 

    Google Scholar
     

  • Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    ADS 

    Google Scholar
     

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS 

    Google Scholar
     

  • Stas, P.-J. et al. Robust multi-qubit quantum network node with integrated error detection. Science 378, 557–560 (2022).

    ADS 

    Google Scholar
     

  • Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).

    ADS 

    Google Scholar
     

  • Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    ADS 

    Google Scholar
     

  • Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    ADS 

    Google Scholar
     

  • Appel, M. H. et al. Entangling a hole spin with a time-bin photon: a waveguide approach for quantum dot sources of multiphoton entanglement. Phys. Rev. Lett. 128, 233602 (2022).

    ADS 

    Google Scholar
     

  • Coste, N. et al. High-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023).

    ADS 

    Google Scholar
     

  • Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photon. 17, 324–329 (2023).

    ADS 

    Google Scholar
     

  • Meng, Y. et al. Deterministic photon source of genuine three-qubit entanglement. Nat. Commun. 15, 7774 (2024).


    Google Scholar
     

  • Meng, Y. et al. Photonic fusion of entangled resource states from a quantum emitter. Preprint at https://arxiv.org/abs/2312.09070 (2023).

  • Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

    ADS 

    Google Scholar
     

  • Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    ADS 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    ADS 

    Google Scholar
     

  • Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    ADS 

    Google Scholar
     

  • Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    ADS 

    Google Scholar
     

  • Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).

    ADS 

    Google Scholar
     

  • Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    ADS 

    Google Scholar
     

  • Barbour, R. J. et al. A tunable microcavity. J. Appl. Phys. 110, 053107 (2011).

    ADS 

    Google Scholar
     

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    ADS 

    Google Scholar
     

  • Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photon. 19, 387–391 (2025).


    Google Scholar
     

  • Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    ADS 

    Google Scholar
     

  • Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    ADS 

    Google Scholar
     

  • De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872–878 (2011).


    Google Scholar
     

  • Prechtel, J. H. et al. Decoupling a hole spin qubit from the nuclear spins. Nat. Mater. 15, 981–986 (2016).

    ADS 

    Google Scholar
     

  • Huthmacher, L. et al. Coherence of a dynamically decoupled quantum-dot hole spin. Phys. Rev. B 97, 241413 (2018).

    ADS 

    Google Scholar
     

  • Prechtel, J. H. et al. Electrically tunable hole g factor of an optically active quantum dot for fast spin rotations. Phys. Rev. B 91, 165304 (2015).

    ADS 

    Google Scholar
     

  • Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    ADS 

    Google Scholar
     

  • Éthier-Majcher, G. et al. Improving a solid-state qubit through an engineered mesoscopic environment. Phys. Rev. Lett. 119, 130503 (2017).

    ADS 

    Google Scholar
     

  • Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    ADS 

    Google Scholar
     

  • Jackson, D. M. et al. Optimal purification of a spin ensemble by quantum-algorithmic feedback. Phys. Rev. X 12, 031014 (2022).


    Google Scholar
     

  • Nguyen, G. N. et al. Enhanced electron-spin coherence in a GaAs quantum emitter. Phys. Rev. Lett. 131, 210805 (2023).

    ADS 

    Google Scholar
     

  • Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

    ADS 

    Google Scholar
     

  • Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nat. Photon. 4, 367–370 (2010).

    ADS 

    Google Scholar
     

  • Bodey, J. H. et al. Optical spin locking of a solid-state qubit. npj Quantum Inf. 5, 95 (2019).

    ADS 

    Google Scholar
     

  • Jackson, D. M. et al. Quantum sensing of a coherent single spin excitation in a nuclear ensemble. Nat. Phys. 17, 585–590 (2021).


    Google Scholar
     

  • Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).

    ADS 

    Google Scholar
     

  • Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    ADS 

    Google Scholar
     

  • Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    ADS 

    Google Scholar
     

  • Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    ADS 

    Google Scholar
     

  • Laucht, A. et al. Breaking the rotating wave approximation for a strongly driven dressed single-electron spin. Phys. Rev. B 94, 161302 (2016).

    ADS 

    Google Scholar
     

  • Nguyen, G. et al. Influence of molecular beam effusion cell quality on optical and electrical properties of quantum dots and quantum wells. J. Cryst. Growth 550, 125884 (2020).


    Google Scholar
     

  • Ludwig, A. et al. Ultra-low charge and spin noise in self-assembled quantum dots. J. Cryst. Growth 477, 193–196 (2017).

    ADS 

    Google Scholar
     

  • Hartmann, S. R. & Hahn, E. L. Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962).

    ADS 

    Google Scholar
     

  • Ribeiro, H., Maier, F. & Loss, D. Inhibition of dynamic nuclear polarization by heavy-hole noncollinear hyperfine interactions. Phys. Rev. B 92, 075421 (2015).

    ADS 

    Google Scholar
     

  • Shofer, N. et al. Tuning the coherent interaction of an electron qubit and a nuclear magnon. Phys. Rev. X 15, 021004 (2025).


    Google Scholar
     

  • Hendrickx, N. W. et al. Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity. Nat. Mater. 23, 920–927 (2024).


    Google Scholar
     

  • Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

    ADS 

    Google Scholar
     

  • Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).

    ADS 

    Google Scholar
     

  • Trif, M., Simon, P. & Loss, D. Relaxation of hole spins in quantum dots via two-phonon processes. Phys. Rev. Lett. 103, 106601 (2009).

    ADS 

    Google Scholar
     

  • Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    ADS 

    Google Scholar
     

  • Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306 (2007).

    ADS 

    Google Scholar
     

  • Lochner, P. et al. Internal photoeffect from a single quantum emitter. Phys. Rev. B 103, 075426 (2021).

    ADS 

    Google Scholar
     

  • Mannel, H. et al. Auger and spin dynamics in a self-assembled quantum dot. J. Appl. Phys. 134, 154304 (2023).

    ADS 

    Google Scholar
     

  • Antoniadis, N. O. et al. Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds. Nat. Commun. 14, 3977 (2023).

    ADS 

    Google Scholar
     

  • Appel, M. H. et al. A many-body quantum register for a spin qubit. Nat. Phys. 21, 368–373 (2025).


    Google Scholar
     

  • Hunger, D., Deutsch, C., Barbour, R. J., Warburton, R. J. & Reichel, J. Laser micro-fabrication of concave, low-roughness features in silica. AIP Adv. 2, 012119 (2012).

    ADS 

    Google Scholar
     

  • Hogg. M. R. et al. Research data for “Fast optical control of a coherent hole spin in a cavity”. Zenodo https://doi.org/10.5281/zenodo.15721612 (2025).