• Csicsák, D. et al. The effect of the particle size reduction on the biorelevant solubility and dissolution of poorly soluble drugs with different acid-base character. Pharmaceutics 15(1), 278 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R. et al. Particle size reduction techniques of pharmaceutical compounds for the enhancement of their dissolution rate and bioavailability. J. Pharm. Innov. 17(2), 333–352 (2022).


    Google Scholar
     

  • Rams-Baron, M. et al. Amorphous Drug Solubility and Absorption Enhancement, in Amorphous Drugs: Benefits and Challenges 41–68 (Springer International Publishing, 2018).

  • Zhuo, X. et al. Mechanisms of drug solubility enhancement induced by β-lactoglobulin-based amorphous solid dispersions. Mol. Pharm. 20(10), 5206–5213 (2023).

    PubMed 

    Google Scholar
     

  • Abourehab, M. A. S. et al. Theoretical investigations on the manufacture of drug nanoparticles using green supercritical processing: Estimation and prediction of drug solubility in the solvent using advanced methods. J. Mol. Liq. 120559 (2022).

  • Faris Alotaibi, H. et al. Pharmaceutical nanonization by green supercritical processing: investigation of exemestane anti-estrogenic medicine solubility using machine learning. J. Mol. Liq. 392, 123353 (2023).


    Google Scholar
     

  • Zhang, Y. Analysis of nanonization and purification of organic compounds via green supercritical processing: model development using advanced hybrid techniques. Case Stud. Therm. Eng. 55, 104159 (2024).


    Google Scholar
     

  • Faraz, O. et al. Thermodynamic modeling of pharmaceuticals solubility in pure, mixed and supercritical solvents. J. Mol. Liq. 353, 118809 (2022).


    Google Scholar
     

  • Zarei, A., Haghbakhsh, R. & Raeissi, S. Overview and thermodynamic modelling of deep eutectic solvents as co-solvents to enhance drug solubilities in water. Eur. J. Pharm. Biopharm. 193, 1–15 (2023).

    PubMed 

    Google Scholar
     

  • Alanazi, M. et al. Development of a novel machine learning approach to optimize important parameters for improving the solubility of an anti-cancer drug within green chemistry solvent. Case Stud. Therm. Eng. 49, 103273 (2023).


    Google Scholar
     

  • Cenci, F. et al. Predicting drug solubility in organic solvents mixtures: A machine-learning approach supported by high-throughput experimentation. Int. J. Pharm. 660, 124233 (2024).

    PubMed 

    Google Scholar
     

  • Ghazwani, M. et al. Development of advanced model for understanding the behavior of drug solubility in green solvents: machine learning modeling for small-molecule API solubility prediction. J. Mol. Liq. 386, 122446 (2023).


    Google Scholar
     

  • Wang, C. et al. Prediction of enhanced drug solubility related to clathrate compositions and operating conditions: machine learning study. Int. J. Pharm. 646, 123458 (2023).

    PubMed 

    Google Scholar
     

  • Rabbani, Y. et al. Application of artificial neural networks and support vector regression modeling in prediction of magnetorheological fluid rheometery. Colloids Surf., A. 520, 268–278 (2017).


    Google Scholar
     

  • Togun, H. et al. Advancing organic photovoltaic cells for a sustainable future: the role of artificial intelligence (AI) and deep learning (DL) in enhancing performance and innovation. Sol. Energy. 291, 113378 (2025).


    Google Scholar
     

  • Halawani, R. F. et al. An advanced heat design-CO2 capture network for an oxy-biogas fuel combustion cycle combined with a CAES-based method for peak shaving: An artificial intelligent-driven optimization. Renew. Energy. 242, 122474 (2025).


    Google Scholar
     

  • Saini, J. P. S., Thakur, A. & Yadav, D. AI-driven innovations in pharmaceuticals: optimizing drug discovery and industry operations. RSC Pharm. 2(3), 437–454 (2025).


    Google Scholar
     

  • Alpaydin, E. Introduction To Machine Learning (MIT Press, 2020).

  • Graish, M. S. et al. Prediction of the viscosity of iron-CuO/water-ethylene glycol non-Newtonian hybrid nanofluids using different machine learning algorithms. Case Stud. Chem. Environ. Eng. 11, 101180 (2025).


    Google Scholar
     

  • Hajinajaf, N. et al. Integrated CO2 capture and nutrient removal by microalgae chlorella vulgaris and optimization using neural network and support vector regression. Waste Biomass Valoriz. 13(12), 4749–4770 (2022).


    Google Scholar
     

  • Zhikun, H. et al. Overview of Gaussian process regression. Control Decis. 28(8), 1121–1129 (2013).


    Google Scholar
     

  • Shi, Q., Abdel-Aty, M. & Lee, J. A Bayesian ridge regression analysis of congestion’s impact on urban expressway safety. Accid. Anal. Prev. 88, 124–137 (2016).

  • Kang, S. K-nearest neighbor learning with graph neural networks. Mathematics 9(8), 830 (2021).


    Google Scholar
     

  • Sheikhi-Kouhsar, M. et al. Solubility of digitoxin in supercritical CO2: Experimental study and modeling. Eur. J. Pharm. Sci., 106731. (2024).

  • Li, M. et al. Employment of artificial intelligence approach for optimizing the solubility of drug in the supercritical CO2 system. Case Stud. Therm. Eng. 57, 104326 (2024).


    Google Scholar
     

  • Shang, Y. et al. Artificial neural network hyperparameters optimization for predicting the thermal conductivity of mxene/graphene nanofluids. J. Taiwan Inst. Chem. Eng. 164, 105673 (2024).


    Google Scholar
     

  • Zhou, H. et al. Combination of group method of data handling neural network with multi-objective Gray Wolf optimizer to predict the viscosity of MWCNT-TiO2 -oil SAE50 nanofluid. Case Stud. Therm. Eng. 64, 105541 (2024).


    Google Scholar
     

  • Shadravan, S., Naji, H. R. & Bardsiri, V. K. The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 80, 20–34 (2019).


    Google Scholar
     

  • Srivastava, A. & Das, D. K. A sailfish optimization technique to solve combined heat and power economic dispatch problem. In 2020 IEEE Students Conference on Engineering & Systems (SCES). (IEEE, 2020).

  • Schapire, R. E. The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990).


    Google Scholar
     

  • Freund, Y. & Schapire, R. E. Experiments with a new boosting algorithm. In icml. ( Citeseer, 1996).

  • Grbić, R., Kurtagić, D. & Slišković, D. Stream water temperature prediction based on Gaussian process regression. Expert Syst. Appl. 40(18), 7407–7414 (2013).


    Google Scholar
     

  • Ma, X., Xu, F. & Chen, B. Interpolation of wind pressures using Gaussian process regression. J. Wind Eng. Ind. Aerodyn. 188, 30–42 (2019).


    Google Scholar
     

  • Rasmussen, C. E. Gaussian processes in machine learning. In Summer School on Machine Learning (Springer, 2003).

  • Song, H. et al. Advancing nanomedicine production via green method: modeling and simulation of pharmaceutical solubility at different temperatures and pressures. J. Mol. Liq. 411, 125806 (2024).


    Google Scholar
     

  • Williams, P. M. Bayesian regularization and pruning using a Laplace prior. Neural Comput. 7(1), 117–143 (1995).


    Google Scholar
     

  • Kruschke, J. K. Bayesian data analysis. Wiley Interdisciplinary Reviews: Cogn. Sci. 1(5), 658–676 (2010).


    Google Scholar
     

  • Kudraszow, N. L. & Vieu, P. Uniform consistency of kNN regressors for functional variables. Stat. Probab. Lett. 83(8), 1863–1870 (2013).


    Google Scholar
     

  • Cover, T. Estimation by the nearest neighbor rule. IEEE Trans. Inf. Theory. 14(1), 50–55 (1968).

    MATH 

    Google Scholar
     

  • Chen, C. R. & Three Kartini, U. K-nearest neighbor neural network models for very short-term global solar irradiance forecasting based on meteorological data. Energies. 10(2), 186 (2017).

  • Li, M. et al. Optimization of drug solubility inside the supercritical CO2 system via numerical simulation based on artificial intelligence approach. Sci. Rep. 14(1), 22779 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almehizia, A. A. et al. Numerical optimization of drug solubility inside the supercritical carbon dioxide system using different machine learning models. J. Mol. Liq. 392, 123466 (2023).


    Google Scholar
     

  • Meng, D. & Liu, Z. Machine learning aided pharmaceutical engineering: model development and validation for estimation of drug solubility in green solvent. J. Mol. Liq. 392, 123286 (2023).


    Google Scholar
     

  • Aldawsari, M. F., Mahdi, W. A. & Alamoudi, J. A. Data-driven models and comparison for correlation of pharmaceutical solubility in supercritical solvent based on pressure and temperature as inputs. Case Stud. Therm. Eng. 49, 103236 (2023).


    Google Scholar