• Yadgir, S. et al. Global burden of disease study 2017 nonrheumatic valve disease collaborators. Global, regional, and National burden of calcific aortic valve and degenerative mitral valve diseases, 1990–2017. Circulation 141, 1670–1680 (2020).

    PubMed 

    Google Scholar
     

  • Baumgartner, H. et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 38, 2739–2791 (2017).

    PubMed 

    Google Scholar
     

  • Smith, J. G. et al. Cohorts for heart and aging research in genetic epidemiology (CHARGE) extracoronary calcium working group. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA 312 (17), 1764–1771 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaltoft, M., Langsted, A. & Nordestgaard, B. G. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen general population study. Eur. Heart J. 41 (24), 2288–2299 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Nazarzadeh, M. et al. Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study. Eur. Heart J. 41 (40), 3913–3920 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cowell, S. J. et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl. J. Med. 352, 2389–2397 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Rossebø, A. B. et al. Intensive lipid Lowering with Simvastatin and Ezetimibe in aortic stenosis. N Engl. J. Med. 359, 1343–1356 (2008).

    PubMed 

    Google Scholar
     

  • Chan, K. L., Teo, K., Dumesnil, J. G., Ni, A. & Tam, J. ASTRONOMER investigators. Effect of lipid Lowering with Rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of Rosuvastatin (ASTRONOMER) trial. Circulation 121, 306–314 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Moore, M. K., Jones, G. T., McCormick, S., Williams, M. J. A. & Coffey, S. Association between lipoprotein(a), LPA genetic risk score, aortic valve disease, and subsequent major adverse cardiovascular events. Eur. J. Prev. Cardiol. 31 (10), 1303–1311 (2024).

    PubMed 

    Google Scholar
     

  • Satterfield, B. A. et al. Associations of genetically predicted Lp(a) (Lipoprotein [a]) levels with cardiovascular traits in individuals of European and African ancestry. Circ. Genom Precis Med. 14 (4), e003354 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arsenault, B. J. et al. Lipoprotein(a) and calcific aortic valve stenosis progression: A systematic review and Meta-Analysis. JAMA Cardiol. 9 (9), 835–842 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers. 2 (1), 6 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl. J. Med. 375 (22), 2144–2153 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Williams, D. M., Finan, C., Schmidt, A. F., Burgess, S. & Hingorani, A. D. Lipid Lowering and alzheimer disease risk: a Mendelian randomization study. Ann. Neurol. 87 (1), 30–39 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Fang, S. et al. Richardson tg.association between genetically proxied PCSK9 Inhibition and prostate cancer risk: A Mendelian randomisation study. PLoS Med. 20 (1), e1003988 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Chen, H. et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur. Heart J. 44 (21), 1927–1939 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Small, A. M. et al. Multiancestry Genome-Wide association study of aortic stenosis identifies multiple novel loci in the million veteran program. Circulation 147 (12), 942–955 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA 326 (16), 1614–1621 (2021).

    PubMed 

    Google Scholar
     

  • Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613 (7944), 508–518 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41 (1), 111–188 (2020).

    PubMed 

    Google Scholar
     

  • Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 139 (25), e1082–e1143 (2019).

  • Borén, J., Taskinen, M. R., Björnson, E. & Packard, C. J. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat. Rev. Cardiol. 19 (9), 577–592 (2022).

    PubMed 

    Google Scholar
     

  • Woolf, B. et al. A drug target for erectile dysfunction to help improve fertility, sexual activity, and wellbeing: Mendelian randomisation study. BMJ 383, e076197 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK biobank. Nature 622 (7982), 329–338 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 369 (6509), 1318–1330 (2020).

    PubMed Central 

    Google Scholar
     

  • Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10 (5), e1004383 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, J. et al. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat. Genet. 52, 740–747 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staiger, D. & Stock, J. H. Instrumental variables regression with weak instruments. Econometrica 65 (3), 557–586 (1997).

    MathSciNet 

    Google Scholar
     

  • Sanderson, E. Multivariable Mendelian randomization and mediation. Cold Spring Harb Perspect. Med. 11 (2), a038984 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson, T. G. et al. Characterising metabolomic signatures of lipid-modifying therapies through drug target Mendelian randomisation. PLoS Biol. 20 (2), e3001547 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Metabolic profiling of angiopoietin-like protein 3 and 4 inhibition: a drug-target Mendelian randomization analysis. Eur. Heart J. 42 (12), 1160–1169 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Salaun, E. et al. Hemodynamic deterioration of surgically implanted bioprosthetic aortic valves. J. Am. Coll. Cardiol. 72, 241–251 (2018).

    PubMed 

    Google Scholar
     

  • Nsaibia, M. J. et al. Association between plasma lipoprotein levels and bioprosthetic valve structural degeneration. Heart 102, 1915 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Perrot, N. et al. Genetic and in vitro inhibition of PCSK9 and calcific aortic valve stenosis. JACC Basic. Transl Sci. 5 (7), 649–661 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poggio, P. et al. PCSK9 involvement in aortic valve calcification. J. Am. Coll. Cardiol. 72, 3225–3227 (2018).

    PubMed 

    Google Scholar
     

  • Rämö, J. et al. Rare genetic variants in ldlr, apob, and PCSK9 are associated with aortic stenosis. Circulation 150 (22), 1767–1780 (2024).

    PubMed 

    Google Scholar
     

  • Kjeldsen, E. W. et al. Cardiovascular risk factors and aortic valve stenosis: towards 10-year absolute risk charts for primary prevention. Eur. J. Prev. Cardiol. https://doi.org/10.1093/eurjpc/zwae177 (2024).

    PubMed 

    Google Scholar
     

  • Larsson, S. C., Wolk, A., Håkansson, N. & Bäck, M. Overall and abdominal obesity and incident aortic valve stenosis: two prospective cohort studies. Eur. Heart J. 38 (28), 2192–2197 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaltoft, M., Langsted, A. & Nordestgaard, B. G. Obesity as a causal risk factor for aortic valve stenosis. J. Am. Coll. Cardiol. 75, 163–176 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Donoghue, M. L. et al. Lipoprotein(a), PCSK9 Inhibition and cardiovascular risk: insights from the FOURIER trial. Circulation 139, 1483–1492 (2019).

    PubMed 

    Google Scholar
     

  • O’Brien, KD et al. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler. Thromb. Vasc Biol. 16 (4), 523–532 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Siudut, J. et al. Apolipoproteins and lipoprotein(a) as factors modulating fibrin clot properties in patients with severe aortic stenosis. Atherosclerosis 344, 49–56 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Hou, Y. et al. Genetic proxy of lipid-lowering drugs and calcific aortic valve stenosis: A Mendelian randomization study. Heliyon 10 (13), e34089 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Causal relationships between Lipid-Lowering drug target and aortic disease and calcific aortic valve stenosis: A Two-Sample Mendelian randomization. Rev. Cardiovasc. Med. 25 (8), 292 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. Identifying novel drug targets for calcific aortic valve disease through Mendelian randomization. Atherosclerosis 402, 119110 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Temel, R. E. et al. Hepatic Niemann- pick C1- like 1 regulates biliary cholesterol concentration and is a target of Ezetimibe. J. Clin. Invest. 117, 1968–1978 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudhop, T. et al. Inhibition of intestinal cholesterol absorption by Ezetimibe in humans. Circulation 106, 1943–1948 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Arsenault, B. J. et al. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective Mendelian randomization study and replication in a case-control cohort. Circ. Cardiovasc. Genet. 7 (3), 304–310 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia, H. S. et al. Oxidized phospholipids and calcific aortic valvular disease. J. Am. Coll. Cardiol. 84 (25), 2430–2441 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, J. G. et al. Efficacy and safety of Alirocumab in reducing lipids and cardiovascular events. N Engl. J. Med. 372 (16), 1489–1499 (2015).

    CAS 
    PubMed 

    Google Scholar