Yadgir, S. et al. Global burden of disease study 2017 nonrheumatic valve disease collaborators. Global, regional, and National burden of calcific aortic valve and degenerative mitral valve diseases, 1990–2017. Circulation 141, 1670–1680 (2020).
Baumgartner, H. et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 38, 2739–2791 (2017).
Smith, J. G. et al. Cohorts for heart and aging research in genetic epidemiology (CHARGE) extracoronary calcium working group. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA 312 (17), 1764–1771 (2014).
Kaltoft, M., Langsted, A. & Nordestgaard, B. G. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen general population study. Eur. Heart J. 41 (24), 2288–2299 (2020).
Nazarzadeh, M. et al. Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study. Eur. Heart J. 41 (40), 3913–3920 (2020).
Cowell, S. J. et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl. J. Med. 352, 2389–2397 (2005).
Rossebø, A. B. et al. Intensive lipid Lowering with Simvastatin and Ezetimibe in aortic stenosis. N Engl. J. Med. 359, 1343–1356 (2008).
Chan, K. L., Teo, K., Dumesnil, J. G., Ni, A. & Tam, J. ASTRONOMER investigators. Effect of lipid Lowering with Rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of Rosuvastatin (ASTRONOMER) trial. Circulation 121, 306–314 (2010).
Moore, M. K., Jones, G. T., McCormick, S., Williams, M. J. A. & Coffey, S. Association between lipoprotein(a), LPA genetic risk score, aortic valve disease, and subsequent major adverse cardiovascular events. Eur. J. Prev. Cardiol. 31 (10), 1303–1311 (2024).
Satterfield, B. A. et al. Associations of genetically predicted Lp(a) (Lipoprotein [a]) levels with cardiovascular traits in individuals of European and African ancestry. Circ. Genom Precis Med. 14 (4), e003354 (2021).
Arsenault, B. J. et al. Lipoprotein(a) and calcific aortic valve stenosis progression: A systematic review and Meta-Analysis. JAMA Cardiol. 9 (9), 835–842 (2024).
Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers. 2 (1), 6 (2022).
Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl. J. Med. 375 (22), 2144–2153 (2016).
Williams, D. M., Finan, C., Schmidt, A. F., Burgess, S. & Hingorani, A. D. Lipid Lowering and alzheimer disease risk: a Mendelian randomization study. Ann. Neurol. 87 (1), 30–39 (2020).
Fang, S. et al. Richardson tg.association between genetically proxied PCSK9 Inhibition and prostate cancer risk: A Mendelian randomisation study. PLoS Med. 20 (1), e1003988 (2023).
Yu Chen, H. et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur. Heart J. 44 (21), 1927–1939 (2023).
Small, A. M. et al. Multiancestry Genome-Wide association study of aortic stenosis identifies multiple novel loci in the million veteran program. Circulation 147 (12), 942–955 (2023).
Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA 326 (16), 1614–1621 (2021).
Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613 (7944), 508–518 (2023).
Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41 (1), 111–188 (2020).
Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 139 (25), e1082–e1143 (2019).
Borén, J., Taskinen, M. R., Björnson, E. & Packard, C. J. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat. Rev. Cardiol. 19 (9), 577–592 (2022).
Woolf, B. et al. A drug target for erectile dysfunction to help improve fertility, sexual activity, and wellbeing: Mendelian randomisation study. BMJ 383, e076197 (2023).
Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).
Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).
Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK biobank. Nature 622 (7982), 329–338 (2023).
The GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 369 (6509), 1318–1330 (2020).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10 (5), e1004383 (2014).
Morrison, J. et al. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat. Genet. 52, 740–747 (2020).
Staiger, D. & Stock, J. H. Instrumental variables regression with weak instruments. Econometrica 65 (3), 557–586 (1997).
Sanderson, E. Multivariable Mendelian randomization and mediation. Cold Spring Harb Perspect. Med. 11 (2), a038984 (2021).
Richardson, T. G. et al. Characterising metabolomic signatures of lipid-modifying therapies through drug target Mendelian randomisation. PLoS Biol. 20 (2), e3001547 (2022).
Wang, Q. et al. Metabolic profiling of angiopoietin-like protein 3 and 4 inhibition: a drug-target Mendelian randomization analysis. Eur. Heart J. 42 (12), 1160–1169 (2021).
Salaun, E. et al. Hemodynamic deterioration of surgically implanted bioprosthetic aortic valves. J. Am. Coll. Cardiol. 72, 241–251 (2018).
Nsaibia, M. J. et al. Association between plasma lipoprotein levels and bioprosthetic valve structural degeneration. Heart 102, 1915 (2016).
Perrot, N. et al. Genetic and in vitro inhibition of PCSK9 and calcific aortic valve stenosis. JACC Basic. Transl Sci. 5 (7), 649–661 (2020).
Poggio, P. et al. PCSK9 involvement in aortic valve calcification. J. Am. Coll. Cardiol. 72, 3225–3227 (2018).
Rämö, J. et al. Rare genetic variants in ldlr, apob, and PCSK9 are associated with aortic stenosis. Circulation 150 (22), 1767–1780 (2024).
Kjeldsen, E. W. et al. Cardiovascular risk factors and aortic valve stenosis: towards 10-year absolute risk charts for primary prevention. Eur. J. Prev. Cardiol. https://doi.org/10.1093/eurjpc/zwae177 (2024).
Larsson, S. C., Wolk, A., Håkansson, N. & Bäck, M. Overall and abdominal obesity and incident aortic valve stenosis: two prospective cohort studies. Eur. Heart J. 38 (28), 2192–2197 (2017).
Kaltoft, M., Langsted, A. & Nordestgaard, B. G. Obesity as a causal risk factor for aortic valve stenosis. J. Am. Coll. Cardiol. 75, 163–176 (2020).
O’Donoghue, M. L. et al. Lipoprotein(a), PCSK9 Inhibition and cardiovascular risk: insights from the FOURIER trial. Circulation 139, 1483–1492 (2019).
O’Brien, KD et al. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler. Thromb. Vasc Biol. 16 (4), 523–532 (1996).
Siudut, J. et al. Apolipoproteins and lipoprotein(a) as factors modulating fibrin clot properties in patients with severe aortic stenosis. Atherosclerosis 344, 49–56 (2022).
Hou, Y. et al. Genetic proxy of lipid-lowering drugs and calcific aortic valve stenosis: A Mendelian randomization study. Heliyon 10 (13), e34089 (2024).
Yang, L. et al. Causal relationships between Lipid-Lowering drug target and aortic disease and calcific aortic valve stenosis: A Two-Sample Mendelian randomization. Rev. Cardiovasc. Med. 25 (8), 292 (2024).
Xu, D. et al. Identifying novel drug targets for calcific aortic valve disease through Mendelian randomization. Atherosclerosis 402, 119110 (2025).
Temel, R. E. et al. Hepatic Niemann- pick C1- like 1 regulates biliary cholesterol concentration and is a target of Ezetimibe. J. Clin. Invest. 117, 1968–1978 (2007).
Sudhop, T. et al. Inhibition of intestinal cholesterol absorption by Ezetimibe in humans. Circulation 106, 1943–1948 (2002).
Arsenault, B. J. et al. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective Mendelian randomization study and replication in a case-control cohort. Circ. Cardiovasc. Genet. 7 (3), 304–310 (2014).
Bhatia, H. S. et al. Oxidized phospholipids and calcific aortic valvular disease. J. Am. Coll. Cardiol. 84 (25), 2430–2441 (2024).
Robinson, J. G. et al. Efficacy and safety of Alirocumab in reducing lipids and cardiovascular events. N Engl. J. Med. 372 (16), 1489–1499 (2015).