• Lord, C., Elsabbagh, M., Baird, G. & Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 392 (10146), 508–520 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Dewik, N. et al. Overview and introduction to autism spectrum disorder (ASD). Adv. Neurobiol. 24, 3–42 (2020).

    PubMed 

    Google Scholar
     

  • Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res. 15 (5), 778–790 (2022).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Beltagi, M. Autism medical comorbidities. World J. Clin. Pediatr. 10 (3), 15–28 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devitt, N. M., Gallagher, L. & Reilly, R. B. Autism spectrum disorder (ASD) and fragile X syndrome (FXS): two overlapping disorders reviewed through Electroencephalography-What can be interpreted from the available information?? Brain Sci. 5 (2), 92–117 (2015).

    PubMed 

    Google Scholar
     

  • Pan, P. Y., Bölte, S., Kaur, P., Jamil, S. & Jonsson, U. Neurological disorders in autism: A systematic review and meta-analysis. Autism 25 (3), 812–830 (2021).

    PubMed 

    Google Scholar
     

  • Agana, M., Frueh, J., Kamboj, M., Patel, D. R. & Kanungo, S. Common metabolic disorder (inborn errors of metabolism) concerns in primary care practice. Ann. Transl Med. 6 (24), 469 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jyonouchi, H. Autism spectrum disorders and allergy: observation from a pediatric allergy/immunology clinic. Expert Rev. Clin. Immunol. 6 (3), 397–411 (2010).

    PubMed 

    Google Scholar
     

  • Wang, J., Ma, B., Wang, J., Zhang, Z. & Chen, O. Global prevalence of autism spectrum disorder and its Gastrointestinal symptoms: A systematic review and meta-analysis. Front. Psychiatry. 13, 963102 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fulceri, F. et al. Gastrointestinal symptoms and behavioral problems in preschoolers with autism spectrum disorder. Dig. Liver Dis. 48 (3), 248–254 (2016).

    PubMed 

    Google Scholar
     

  • Xu, G. et al. Association of food allergy and other allergic conditions with autism spectrum disorder in children. JAMA Netw. Open. 1 (2), e180279 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bresnahan, M. et al. Association of maternal report of infant and toddler Gastrointestinal symptoms with autism: evidence from a prospective birth cohort. JAMA Psychiatry. 72 (5), 466–474 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niesler, B. & Rappold, G. A. Emerging evidence for gene mutations driving both brain and gut dysfunction in autism spectrum disorder. Mol. Psychiatry. 26 (5), 1442–1444 (2021).

    PubMed 

    Google Scholar
     

  • Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448 (7152), 427–434 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. et al. Association of autism spectrum disorders and inflammatory bowel disease. J. Autism Dev. Disord. 48 (5), 1523–1529 (2018).

    PubMed 

    Google Scholar
     

  • Kim, J. Y. et al. Association between autism spectrum disorder and inflammatory bowel disease: A systematic review and meta-analysis. Autism Res. 15 (2), 340–352 (2022).

    PubMed 

    Google Scholar
     

  • Imamura, A. et al. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J. Neural Transm (Vienna). 127 (11), 1501–1515 (2020).

    PubMed 

    Google Scholar
     

  • Sadik, A. et al. Parental inflammatory bowel disease and autism in children. Nat. Med. 28 (7), 1406–1411 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clappison, E., Hadjivassiliou, M. & Zis, P. Psychiatric manifestations of coeliac disease, a systematic review and Meta-Analysis. Nutrients ;12(1) ,142 (2020).

  • Lebwohl, B. et al. Psychiatric disorders in patients with a diagnosis of Celiac disease during childhood from 1973 to 2016. Clin. Gastroenterol. Hepatol. 19 (10), 2093–101e13 (2021).

    PubMed 

    Google Scholar
     

  • Lau, N. M. et al. Markers of Celiac disease and gluten sensitivity in children with autism. PLoS One. 8 (6), e66155 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennabi, M. et al. HLA-class II haplotypes and autism spectrum disorders. Sci. Rep. 8 (1), 7639 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, X. et al. A deep learning framework for predicting disease-gene associations with functional modules and graph augmentation. BMC Bioinform. 25 (1), 214 (2024).


    Google Scholar
     

  • Malekpour, M., Jafari, A., Kashkooli, M., Salarikia, S. R. & Negahdaripour, M. A systems biology approach for discovering the cellular and molecular aspects of psychogenic non-epileptic seizure. Front. Psychiatry ;14, 1116892 (2023).

  • Malekpour, M., Salarikia, S. R., Kashkooli, M. & Asadi-Pooya, A. A. The genetic link between systemic autoimmune disorders and Temporal lobe epilepsy: A bioinformatics study. Epilepsia Open. 8 (2), 509–516 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Identification of the shared gene signatures between autism spectrum disorder and epilepsy via bioinformatic analysis. Comput. Math. Methods Med. 2022, 9883537 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arenella, M. et al. Genetic relationship between the immune system and autism. Brain Behav. Immun. Health. 34, 100698 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48 (D1), D845–D55 (2019).

    PubMed Central 

    Google Scholar
     

  • Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51 (D1), D977–d85 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50 (D1), D988–D95 (2021).

    PubMed Central 

    Google Scholar
     

  • Berglund, L. et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol. Cell. Proteom. 7 (10), 2019–2027 (2008).

    CAS 

    Google Scholar
     

  • Uhlén, M. et al. Tissue-based map of the human proteome. Sci 347 (6220), 1260419 (2015).


    Google Scholar
     

  • Main, P. A., Angley, M. T., Thomas, P., O’Doherty, C. E. & Fenech, M. Folate and methionine metabolism in autism: a systematic review. Am. J. Clin. Nutr. 91 (6), 1598–1620 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Liew, S. C. & Gupta, E. D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 58 (1), 1–10 (2015).

    PubMed 

    Google Scholar
     

  • Li, Y. et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr. 20 (1), 449 (2020).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaik Mohammad, N. et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr Genet. 26 (6), 281–286 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Rai, V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab. Brain Dis. 31 (4), 727–735 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, B. Q., Li, H. B. & Ding, S. B. Blood homocysteine levels in children with autism spectrum disorder: an updated systematic review and meta-analysis. Psychiatry Res. 291, 113283 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, T., Chen, H., Liu, B., Ji, W. & Yang, C. Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. Genet. Test. Mol. Biomarkers. 16 (8), 968–973 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Pu, D., Shen, Y. & Wu, J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 6 (5), 384–392 (2013).

    PubMed 

    Google Scholar
     

  • Schmidt, R. J. et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood autism risks from genetics and Environment) case-control study. Am. J. Clin. Nutr. 96 (1), 80–89 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilcox, G. M. & Mattia, A. R. Celiac sprue, hyperhomocysteinemia, and MTHFR gene variants. J. Clin. Gastroenterol. 40 (7), 596–601 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Hozyasz, K. K., Mostowska, A., Szaflarska-Poplawska, A., Lianeri, M. & Jagodzinski, P. P. Polymorphic variants of genes involved in homocysteine metabolism in Celiac disease. Mol. Biol. Rep. 39 (3), 3123–3130 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Dickey, W. et al. Homocysteine and related B-vitamin status in coeliac disease: effects of gluten exclusion and histological recovery. Scand. J. Gastroenterol. 43 (6), 682–688 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Hadithi, M. et al. Effect of B vitamin supplementation on plasma homocysteine levels in Celiac disease. World J. Gastroenterol. 15 (8), 955–960 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oussalah, A., Guéant, J. L. & Peyrin-Biroulet, L. Meta-analysis: hyperhomocysteinaemia in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 34 (10), 1173–1184 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Mahmud, N. et al. Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with inflammatory bowel disease, and its clinical implications. Gut 45 (3), 389–394 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karban, A., Feldman, T., Waterman, M., Leiba, R. & Efrati, E. The association of the MTHFR C677T polymorphism with inflammatory bowel diseases in the Israeli Jewish population: an example of genetic heterogeneity. Med. (Baltim). 95 (51), e5611 (2016).

    CAS 

    Google Scholar
     

  • Steluti, J. et al. Unmetabolized folic acid is associated with TNF-α, IL-1β and IL-12 concentrations in a population exposed to mandatory food fortification with folic acid: a cross-sectional population-based study in Sao paulo, Brazil. Eur. J. Nutr. 60 (2), 1071–1079 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoxha, B. et al. Folic acid and autism: A systematic review of the current state of knowledge. Cells ;10(8) 1976 (2021).

  • Zhang, X. et al. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol. Med. 160, 552–565 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation. 14 (1), 187 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, W. K. & Kan, M. Y. Homocysteine-Induced endothelial dysfunction. Ann. Nutr. Metab. 67 (1), 1–12 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferretti, A., Parisi, P. & Villa, M. P. The role of hyperhomocysteinemia in neurological features associated with coeliac disease. Med. Hypotheses. 81 (4), 524–531 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Esse, R., Barroso, M., Tavares de Almeida, I. & Castro, R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: State-of-the-Art. Int. J. Mol. Sci. ;20 (4), 867 (2019).

  • Mehta, R., Kuhad, A. & Bhandari, R. Nitric oxide pathway as a plausible therapeutic target in autism spectrum disorders. Expert Opin. Ther. Targets. 26 (7), 659–679 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Rana, T. Influence and implications of the molecular paradigm of nitric oxide underlying inflammatory reactions of the Gastrointestinal tract of dog: A major hallmark of inflammatory bowel disease. Inflamm. Bowel Dis. 28 (8), 1280–1288 (2022).

    PubMed 

    Google Scholar
     

  • Liu, X. et al. Oxidative stress in autism spectrum Disorder-Current progress of mechanisms and biomarkers. Front. Psychiatry. 13, 813304 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyrin-Biroulet, L. et al. Vascular and cellular stress in inflammatory bowel disease: revisiting the role of homocysteine. Am. J. Gastroenterol. 102 (5), 1108–1115 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Schicho, R., Marsche, G. & Storr, M. Cardiovascular complications in inflammatory bowel disease. Curr. Drug Targets. 16 (3), 181–188 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croall, I. D., Hoggard, N. & Hadjivassiliou, M. Gluten and autism spectrum disorder. Nutrients ;13(2), 572 (2021).

  • Manivasagam, T. et al. Role of oxidative stress and antioxidants in autism. Adv. Neurobiol. 24, 193–206 (2020).

    PubMed 

    Google Scholar
     

  • Wirth, J. A., Jensen, K. A., Post, P. L., Bement, W. M. & Mooseker, M. S. Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J. Cell. Sci. 109 (Pt 3), 653–661 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Almandil, N. B. et al. Integration of transcriptome and exome genotyping identifies significant variants with autism spectrum disorder. Pharmaceuticals (Basel) ;15(2) 158 (2022).

  • Alsubaie, L. M. et al. Risk Y-haplotypes and pathogenic variants of Arab-ancestry boys with autism by an exome-wide association study. Mol. Biol. Rep. 47 (10), 7623–7632 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Liao, N., Chen, M. L., Zhao, H. & Xie, Z. F. Association between the MYO9B polymorphisms and Celiac disease risk: a meta-analysis. Int. J. Clin. Exp. Med. 8 (9), 14916–14925 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latiano, A. et al. The association of MYO9B gene in Italian patients with inflammatory bowel diseases. Aliment. Pharmacol. Ther. 27 (3), 241–248 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Hanley, P. J., Vollmer, V. & Bähler, M. Class IX myosins: motorized RhoGAP signaling molecules. Adv. Exp. Med. Biol. 1239, 381–389 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Monsuur, A. J. et al. Myosin IXB variant increases the risk of Celiac disease and points toward a primary intestinal barrier defect. Nat. Genet. 37 (12), 1341–1344 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Hegan, P. S. et al. Mice lacking myosin ixb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum. Cytoskeleton (Hoboken). 73 (4), 163–179 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Chandhoke, S. K. & Mooseker, M. S. A role for myosin ixb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol. Biol. Cell. 23 (13), 2468–2480 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diakonova, M., Bokoch, G. & Swanson, J. A. Dynamics of cytoskeletal proteins during Fcgamma receptor-mediated phagocytosis in macrophages. Mol. Biol. Cell. 13 (2), 402–411 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, H. et al. Myo9b and RICS modulate dendritic morphology of cortical neurons. Cereb. Cortex. 23 (1), 71–79 (2013).

    PubMed 

    Google Scholar
     

  • Faust, T. E., Gunner, G. & Schafer, D. P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22 (11), 657–673 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. The motorized RhoGAP myosin IXb (Myo9b) in leukocytes regulates experimental autoimmune encephalomyelitis induction and recovery. J. Neuroimmunol. 282, 25–32 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Petrelli, F., Pucci, L. & Bezzi, P. Astrocytes and microglia and their potential link with autism spectrum disorders. Front. Cell. Neurosci. 10, 21 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matta, S. M., Hill-Yardin, E. L. & Crack, P. J. The influence of neuroinflammation in autism spectrum disorder. Brain Behav. Immun. 79, 75–90 (2019).

    PubMed 

    Google Scholar
     

  • Anand, N., Gorantla, V. R. & Chidambaram, S. B. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells ;12(1), 54 (2022).