• Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lininger, A. et al. Chirality in light-matter interaction. Adv. Mater. 35, 2107325 (2023).

    CAS 

    Google Scholar
     

  • Riso, R. R., Grazioli, L., Ronca, E., Giovannini, T. & Koch, H. Strong coupling in chiral cavities: nonperturbative framework for enantiomer discrimination. Phys. Rev. X 13, 031002 (2023).

    CAS 

    Google Scholar
     

  • Mayer, N. et al. Chiral topological light for detection of robust enantiosensitive observables. Nat. Photonics 18, 1155 (2024).

  • Jiang, C., Baggioli, M. & Jiang, Q.-D. Engineering flat bands in twisted-bilayer graphene away from the magic angle with chiral optical cavities. Phys. Rev. Lett. 132, 166901 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat. Commun. 15, 2 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y., Correa da Costa, R., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7, 634 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).


    Google Scholar
     

  • Jalas, D. et al. What is-and what is not-an optical isolator. Nat. Photonics 7, 579 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardano, F. et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valencia-Tortora, R. J., Pancotti, N., Fleischhauer, M., Bernien, H. & Marino, J. Rydberg platform for nonergodic chiral quantum dynamics. Phys. Rev. Lett. 132, 223201 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pucher, S., Liedl, C., Jin, S., Rauschenbeutel, A. & Schneeweiss, P. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nat. Photonics 16, 380 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Antoniadis, N. O. et al. A chiral one-dimensional atom using a quantum dot in an open microcavity. npj Quantum Inf. 8, 27 (2022).

    ADS 

    Google Scholar
     

  • Joshi, C., Yang, F. & Mirhosseini, M. Resonance fluorescence of a chiral artificial atom. Phys. Rev. X 13, 021039 (2023).

    CAS 

    Google Scholar
     

  • Owens, J. C. et al. Chiral cavity quantum electrodynamics. Nat. Phys. 18, 1048 (2022).

    CAS 

    Google Scholar
     

  • Söllner, I. et al. Deterministic photon emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurst, D. L. et al. Nonreciprocal transmission and reflection of a chirally coupled quantum dot. Nano Lett. 18, 5475 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mun, J. et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light.: Sci. Appl. 9, 139 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photonics 10, 5700109 (2018).


    Google Scholar
     

  • Wang, Y.-P. et al. Nonreciprocity and Unidirectional Invisibility in Cavity Magnonics. Phys. Rev. Lett. 123, 127202 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl. 13, 044039 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Nonreciprocal multimode and indirect couplings in cavity magnonics. Phys. Rev. B 103, 184427 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Yu, W., Yu, T. & Bauer, G. E. W. Circulating cavity magnon polaritons. Phys. Rev. B 102, 064416 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Bourhill, J. et al. Generation of circulating cavity magnon polaritons. Phys. Rev. Appl. 19, 014030 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Yu, T. et al. Magnon accumulation in chirally coupled magnets. Phys. Rev. Lett. 124, 107202 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, T., Zhang, X., Sharma, S., Blanter, Y. M. & Bauer, G. E. W. Chiral coupling of magnons in waveguides. Phys. Rev. B 101, 094414 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Ye, X., Xia, K., Bauer, G. E. W. & Yu, T. Chiral-damping-enhanced magnon transmission. Phys. Rev. Appl. 22, L011001 (2024).

    CAS 

    Google Scholar
     

  • Fan, Z. Y., Zuo, X., Li, H. T. & Li, J. Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity–magnon coupling. Fundamental Res. https://doi.org/10.1016/j.fmre.2025.02.012 (2025).

  • Wang, Z.-Y., Qian, J., Wang, Y. P., Li, J. & You, J. Q. Realization of the unidirectional amplification in a cavity magnonic system. Appl. Phys. Lett. 123, 153904 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Qian, J. et al. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics. Appl. Phys. Lett. 116, 192401 (2020).

    ADS 

    Google Scholar
     

  • Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015).

    ADS 

    Google Scholar
     

  • Mahmoodian, S., Lodahl, P. & Sø rensen, A. S. Quantum networks with chiral-light-matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Vermersch, B., Guimond, P.-O., Pichler, H. & Zoller, P. Quantum state transfer via noisy photonic and phononic waveguides. Phys. Rev. Lett. 118, 133601 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, B. M., Ma, R., Owens, C., Schuster, D. I. & Simon, J. Engineering topological many-body materials in microwave cavity arrays. Phys. Rev. X 6, 041043 (2016).


    Google Scholar
     

  • Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ra’di, Y., Simovski, C. R. & Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015).

    ADS 

    Google Scholar
     

  • Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, C. Q., William, R. S., Stone, A. D. & Yang, L. Coherent perfect absorption at an exceptional point. Science 373, 1261 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pichler, K. et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 567, 351 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Slobodkin, Y. et al. Massively degenerate coherent perfect absorber for arbitrary wavefronts. Science 377, 995 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aeschlimann, M. et al. Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nat. Photonics 9, 663 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Müllers, A. et al. Coherent perfect absorption of nonlinear matter waves. Sci. Adv. 4, eaat6539 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, J. et al. Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics. Nat. Commun. 14, 3437 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, J. W. et al. Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics. Nat. Commun. 12, 1933 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. et al. Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Mechelen, T. V. & Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 3, 118 (2016).

    ADS 

    Google Scholar
     

  • Bliokh, K. Y., Leykam, D., Lein, M. & Nori, F. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun. 10, 580 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1 (2015).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin-orbit interactions of light. Nat. Photonics 9, 796 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallett, D., Foster, A. P., Whittaker, D., Skolnick, M. S. & Wilson, L. R. Engineering chiral light-matter interactions in a waveguide coupled nanocavity. ACS Photonics 9, 706 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Fortuno, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, S., He, L. & Li, M. Spin-momentum locked interaction between guided photons and surface electrons in topological insulators. Nat. Commun. 8, 2141 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Söllner, I. et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiasera, A. et al. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 4, 457 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Bliokh, Y. K. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012).

    ADS 

    Google Scholar
     

  • Liu, J. F. et al. Spin-controlled reconfigurable excitations of spoof surface plasmon polaritons by a compact structure. Laser Photonics Rev. 17, 2200257 (2023).

    ADS 

    Google Scholar
     

  • Liu, J. F., Wu, J. W., Fu, X., Tang, W. & Cui, T. J. Arbitrary polarization syntheses based on spin-momentum locking in spoof surface plasmon polaritons. Adv. Optical Mater. 11, 2202618 (2023).

    CAS 

    Google Scholar
     

  • Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Francisco, J. et al. Spoof surface plasmon photonics. Rev. Mod. Phys. 94, 025004 (2022).


    Google Scholar
     

  • Maier, S. A., Andrews, S. R., Martin-Moreno, L. & Garcia-Vidal, F. J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, S. Y. et al. Critical couplings in topological-insulator waveguide-resonator systems observed in elastic waves. Natl Sci. Rev. 8, nwaa262 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Anomalous long-distance coherence in critically-driven cavity magnonics. Phys. Rev. Lett. 132, 206972 (2024).


    Google Scholar
     

  • Ma, H. F., Shen, X., Cheng, Q., Jiang, W. X. & Cui, T. J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 8, 146 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Gloppe, A., Hisatomi, R., Nakata, Y., Nakamura, Y. & Usami, K. Resonant magnetic induction tomography of a magnetized sphere. Phys. Rev. Appl. 12, 014061 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Slow-wave hybrid magnonics. Phys. Rev. Lett. 132, 116701 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Y. et al. Bound chiral magnonic polariton states for ideal microwave isolation. Sci. Adv. 9, eadg4730 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar