• Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    ADS 

    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quant. Electron. 26, 1–18 (2020).


    Google Scholar
     

  • Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Sui, X., Wu, Q., Liu, J., Chen, Q. & Gu, G. A review of optical neural networks. IEEE Access 8, 70773–70783 (2020).


    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    ADS 

    Google Scholar
     

  • Berggren, K. et al. Roadmap on emerging hardware and technology for machine learning. Nanotechnology 32, 012002 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).


    Google Scholar
     

  • Xu, S. et al. Optical coherent dot-product chip for sophisticated deep learning regression. Light Sci. Appl. 10, 221 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H. H. et al. Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13, 1044 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021).

    ADS 

    Google Scholar
     

  • Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics 17, 408–415 (2023).

    ADS 

    Google Scholar
     

  • Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).

    ADS 

    Google Scholar
     

  • Huang, C. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).


    Google Scholar
     

  • Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photonics 17, 723–730 (2023).

    ADS 

    Google Scholar
     

  • Xu, X. et al. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev. 14, 2000070 (2020).

    ADS 

    Google Scholar
     

  • Bai, B. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14, 66 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, B., Calabretta, N. & Stabile, R. Deep neural network through an InP SOA-based photonic integrated cross-connect. IEEE J. Sel. Top. Quantum Electron. 26, 1–11 (2020).


    Google Scholar
     

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242 (2021).

    ADS 

    Google Scholar
     

  • Hu, Y. et al. Integrated electro-optics on thin-film lithium niobate. Nat. Rev. Phys. 7, 237–254 (2025).


    Google Scholar
     

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13, 359–364 (2019).

    ADS 

    Google Scholar
     

  • Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61 (2022).

    ADS 

    Google Scholar
     

  • Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics 16, 679–685 (2022).

    ADS 

    Google Scholar
     

  • Zhu, X. et al. Twenty-nine million intrinsic Q -factor monolithic microresonators on thin-film lithium niobate. Photonics Res. 12, A63 (2024).


    Google Scholar
     

  • Lin, Z. et al. 120 GOPS photonic tensor core in thin-film lithium niobate for inference and in situ training. Nat. Commun. 15, 9081 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou, S. et al. Hypermultiplexed integrated photonics-based optical tensor processor. Sci. Adv. 11, eadu0228 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).


    Google Scholar
     

  • Krizhevsky, A. & Hinton, G. Learning Multiple Layers Of Features From Tiny Images. (University of Toronto, 2009).

  • Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357 (2021).

    ADS 

    Google Scholar
     

  • St-Arnault, C. et al. Net 3.2 Tbps 225 Gbaud PAM4 O-band IM/DD 2 km transmission using FR8 and DR8 with a CMOS 3 nm SerDes and TFLN modulators. arXiv https://doi.org/10.48550/arXiv.2503.24147 (2025).

  • Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536 (2017).

    ADS 

    Google Scholar
     

  • Song, Y. et al. Integrated electro-optic digital-to-analog link for efficient computing and arbitrary waveform generation. arXivhttps://doi.org/10.48550/arXiv.2411.04395 (2024).

  • Della Torre, A. et al. Folded electro-optical modulators operating at CMOS voltage level in a thin-film lithium niobate foundry process. Opt. Express 33, 6747 (2025).

    PubMed 

    Google Scholar
     

  • Wang, J. et al. Highly tunable flat-top thin-film lithium niobate electro-optic frequency comb generator with 148 comb lines. Opt. Express 33, 23431 (2025).

    PubMed 

    Google Scholar
     

  • Renaud, D. et al. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, S. et al. Full-spectrum visible electro-optic modulator. Optica 10, 125 (2023).

    ADS 

    Google Scholar
     

  • Song, Y., Hu, Y., Zhu, X., Yang, K. & Lončar, M. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light Sci. Appl. 13, 225 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franken, C. A. A. et al. High-power and narrow-linewidth laser on thin-film lithium niobate enabled by photonic wire bonding. APL Photonics 10, 026107 (2025).


    Google Scholar
     

  • Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics 17, 781–790 (2023).

    ADS 

    Google Scholar
     

  • Chang, P.-H. et al. A 3D Integrated energy-efficient transceiver realized by direct bond interconnect of co-designed 12 nm FinFET and silicon photonic integrated circuits. J. Light. Technol. 41, 6741–6755 (2023).

    ADS 

    Google Scholar
     

  • Daudlin, S. et al. Three-dimensional photonic integration for ultra-low-energy, high-bandwidth interchip data links. Nat. Photonics 19, 502–509 (2025).


    Google Scholar
     

  • Ahmed, S. R. et al. Universal photonic artificial intelligence acceleration. Nature 640, 368–374 (2025).

    PubMed 

    Google Scholar
     

  • Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 603, 253–258 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S. et al. Integrated lithium niobate photonic millimetre-wave radar. Nat. Photonics 19, 204–211 (2025).


    Google Scholar
     

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    ADS 

    Google Scholar
     

  • Kues, M. et al. Quantum optical microcombs. Nat. Photonics 13, 170–179 (2019).

    ADS 

    Google Scholar
     

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).

    ADS 

    Google Scholar
     

  • Guo, X. et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Res. 10, 1338 (2022).


    Google Scholar
     

  • Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, D. Large-Scale Optical Neural Networks Based on Photoelectric Multiplication. Phys. Rev. X 9, 021032 (2019).


    Google Scholar